Most geologists accept radiometric dating techniques as valid because radioactive elements decay at a constant and measurable rate.
Answer: Option C
<u>Explanation:</u>
Scientists prefer radioactive dating to carbon dating because it is more accurate in measuring. The analysis depends upon the radioactive decay of radioactive isotopes of any matter in a given rock or soil.
The parent atoms and daughter atoms are compared while studying, and hence age can be calculated easily. Radioactive decay depends upon the given half-life of the atom, which is a constant and is known. So, it would be very easy to calculate the number of progeny atoms and parent atoms and find out their age.
Answer:
D) equal to the flux of electric field through the Gaussian surface B.
Explanation:
Flux through S(A) = Flux through S (B ) = Charge inside/ ∈₀
This next statement is a big deal. It should be up on a board, surrounded
by flashing red and yellow lights, and hung on the wall of every Science
classroom. Although we never see it in our daily lives, it's fundamental to
the workings of the universe, and it's also Newton's first law of motion:
<em>Without friction, it doesn't take <u>ANY</u> force to keep a moving object
moving. </em><em>Force is only required to <u>change</u> the object's speed, or to
<u>change</u> the direction </em><em>in which it's moving.</em>
The answer to the question is: On a level road, and neglecting any friction,
the engine doesn't have to supply ANY force to keep the car going at the
same speed.
You do not doubt it. The third Law of Newton really works. I would say it is the most reliable law of the Universe. Action and reaction. It is not subject to special conditions, it works always. If an object exerts a force over other object, the second object exerts a force of equal magnitude but in the opposed direction over the first.
So, the answer, undoubtedly, is that the ball exerts a force of 0.5 N over Alices's foot as she kicks it.