Density = Mass / Volume
Density = 2.0g / 5.0ml
Density = 0.4 g/ml
Deshielding due to an electronegative element close by is the common reason for observing increased chemical shift of a c-h proton
<h3>
What is a chemical shift? </h3>
The resonance frequency of a proton in relation to a standard compound is represented by chemical shift. Chemical shift, which is measured in ppm and is represented by the sign (δ), (parts per million).The chemical shift in a proton NMR spectrum provides details about the targeted proton's chemical surroundings. The structure of the investigated substance, especially electronegative components or effects, has a significant impact on the chemical shift value. Electronegative elements' ability to remove electron density from the proton, which raises the chemical shift value, is one explanation for this. The proton is more exposed to the magnetic field that is being applied externally as a result of this process, which is referred to as de-shielding.
To learn more about limbic system visit:
brainly.com/question/14788457
#SPJ4
Answer:
hope this helped
Explanation:
Radiant energy is created through electromagnetic waves and was discovered in 1885 by Sir William Crookes. Fields in which this terminology is most often used are telecommunications, heating, radiometry, lighting, and in terms of energy created from the sun.
Does mass<span> alone provide no information about the amount or size of a measured quantity? No, we need combine </span>mass<span> and </span>volume<span> into "one equation" to </span>determine<span> "</span>density<span>" provides more ... </span>g/mL<span>. An </span>object has<span> a mass of </span>75 grams<span> and a volume of </span>25 cc<span>. ... A </span>certain object weighs 1.25 kg<span> and </span>has<span> a </span>density of<span> </span>5.00 g/<span>mL</span>
Answer:
The higher the frequency, the shorter the wavelength
Explanation:
All light waves move through a vacuum at the same speed, the number of wave crests passing by a given point in one second depends on the wavelength.