Answer:
The maximum safe speed of the car is 30.82 m/s.
Explanation:
It is given that,
The formula that models the maximum safe speed, v, in miles per hour, at which a car can travel on a curved road with radius of curvature r r, is in feet is given by :
.........(1)
A highway crew measures the radius of curvature at an exit ramp on a highway as 380 feet, r = 380 feet
Put the value of r in equation (1) as :

v = 30.82 m/s
So, the maximum safe speed of the car is 30.82 m/s. Hence, this is the required solution.
Answer:
5 n
Explanation:
25 and 25 cancel each other out and 50-45 is 5
Average force applied by the call on the glove = 780 N
Explanation:
mass of baseball=0.140 kg
initial velocity = Vi= 35 m/s
Final velocity=Vf= 0
distance traveled=11 cm= 0.11 m
using the kinematic equation Vf²= Vi²+ 2 a d
where a = acceleration
0²= 35²+ 2 a (0.11)
a=-5568.2 m/s²
Now force is given by F= ma
F= 0.140 (5568.2)
F=-780 N
The negative sign signifies that the force acts in the opposite direction.
so the average force= 780 N
Answer:
e.26m/s
Explanation:
Vf=Vi+at (1)
Vf=9j+(2i-4j)t
X= X₀+at
now, in the i direction
15=O+2t or t=7.5 when x position is 15
Lets put that into the (1) equation, solve for Vf.
Vf=9j+(2i-4j)7.5
Vf= 15i - 21j
Speed=
Vf= 25.8 m/s
In a third class lever, the effort is located between the load and the fulcrum. If the fulcrum is closer to the load, then less effort is needed to move the load. If the fulcrum is closer to the effort, then the load will move a greater distance. ... These levers are useful for making precise movements.