1) Acceleration of the sled
The acceleration of the sled is given by the net force acting in the direction parallel to the incline. There are two forces acting along this direction: the component of the weight parallel to the ramp (downward) and the friction (upward). Therefore, the net force acting in this direction is

And the acceleration is given by Newton's second law:

2) Normal force
The normal force acting on the sled is equal to the component of the weight perpendicular to the incline, therefore:

Answer:
The bending moment is 459.16 N.m
Explanation:
From the given information;
Let's assume that the angle is 66°
Then, the free body diagram is draw and attached in the file below.
Now, the calculation of the acceleration from the first part of the free body diagram is:

Bending moment M:
From the second part of the diagram:

Answer:
Hope this helps :)
Explanation:
1. A
2. G (because the basic definition of internal energy is, the sum of kinetic and potential energies of water molecules)
There are several information's of immense importance already given in the question. Based on the given information's the answer to the question can easily be determined.
Distance covered by the bicycle = 5000 meter
Time taken by the bicycle to reach the distance = 500 second.
Velocity of the bicycle = Distance / Time taken
= 5000/500 meter/second
= 50 meter/second
So the velocity of the bicycle is 50 meter per second. I hope the procedure is clear enough for you to understand. In future you can always use this procedure for solving similar problems.