As seen from the Earth, the Sun, Moon, and planets all appear to move along the ecliptic. ... Unlike the Sun, however, the planets don't always move in the same direction along the ecliptic. They usually move in the same direction as the Sun, but from time to time they seem to slow down, stop, and reverse direction!
Because of various events in their (unknown) past history that resulted in deviations from the theoretical orbit. That formed in the plain of the ecliptic.
Capturing a large passing comet or asteroid might do it.
Answer:
Explanation:
Not enough information.
IF we ASSUME she wants the car to be at LAUNCH LEVEL after 1 second of flight.
THEN
The highest point will have zero vertical velocity and will have taken ½ second to get there. This means that the initial vertical velocity was
v = gt
vy₀ = 9.8(0.5)
vy₀ = 4.9 m/s
vsinθ = vy₀
v = vy₀/sinθ
v = 4.9/sin32
v = 9.2466...
v = 9.2 m/s
I think it is B Because it sounds like the best choice
Answer:
11.28 N toward the center of the track
Explanation:
Centripetal force: This is the force that tend to draw a body close to the center of a circle, during circular motion.
The formula for centripetal force is given as,
F = mv²/r................................ Equation 1
Where F = force, m = mass of the toy car, v = velocity, r = radius
Given: m = 108 g = 0.108 kg, v = 7.75 m/s, r = 57.5 cm = 0.575 m
Substitute into equation 1
F = 0.108(7.75²)/0.575
F = 11.28 N
Hence the magnitude and direction of the force = 11.28 N toward the center of the track