consider the motion along the X-direction
X = horizontal displacement = 80 m
= initial velocity along the x-direction = v Cos60
t = time of travel
using the equation
X =
t
80 = (v Cos60) (t)
t = 160/v eq-1
consider the motion in vertical direction :
Y = vertical displacement = 20 m
= initial velocity in Y-direction = v Sin60
a = acceleration = - 9.8 m/s²
t = time of travel = 160/v
using the equation
Y =
t + (0.5) a t²
20 = (v Sin60) (160/v) + (0.5) (- 9.8) (160/v)²
v = 32.5 m/s
Answer:
L = 3.51
Explanation:
Pendulum equation is T = 2pi
T = 1.5 and we are solving for L
1.5=2
square both sides to get 2.25 = 2
multiply both sides by 9.81 then divide by 2 and 3.14 as a substitue for pi. The answer should be about 3.51 in length
L = 3.51
If this helps, mark me brainliest pls
Answer:
9.773m/s2
Explanation:
Given,
h=8848m
The value of sea level is 9.08m/s2
So,
Let g′ be the acceleration due to the gravity on the Mount Everest.
g′=g(1−h2h)
=9.8(1−640000017696)
=9.8(1−0.00276)
9.8×0.99724
=9.773m/s2
Thus, the acceleration due to gravity on the top of Mount Everest is =9.773m/s2
Hope it helped!!!
A model train traveling at a constant speed around a circular track has a constant velocity. FALSE.
Hope this helps you!