Explanation:
It is given that,
Wavelength of red laser light, 
The second order fringe is formed at an angle of, 
For diffraction grating,

, n = 2


The wavelength λ of light that creates a first-order fringe at 22 is given by :




Hence, this is the required solution.
<span>Px = 0
Py = 2mV
second, Px = mVcosφ
Py = –mVsinφ
add the components
Rx = mVcosφ
Ry = 2mV – mVsinφ
Magnitude of R = âš(Rx² + Ry²) = âš((mVcosφ)² + (2mV – mVsinφ)²)
and speed is R/3m = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²)
simplifying
Vf = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²)
Vf = (1/3)âš((Vcosφ)² + (2V – Vsinφ)²)
Vf = (V/3)âš((cosφ)² + (2 – sinφ)²)
Vf = (V/3)âš((cos²φ) + (4 – 2sinφ + sin²φ))
Vf = (V/3)âš(cos²φ) + (4 – 2sinφ + sin²φ))
using the identity sin²(Ď)+cos²(Ď) = 1
Vf = (V/3)âš1 + 4 – 2sinφ)
Vf = (V/3)âš(5 – 2sinφ)</span>
Answer:If kinetic energy increases, so does the thermal energy, and vice versa.
Please brainliest!
A high electromagnetic wave has short, very fast, frequent waves.
a low electromagnetic wave has long, very slow, infrequent waves.
hope this helps! pls mark brainliest!
Model I'm guessing. Coz that's using an object to explain