Answer: Option (b) is correct.
Explanation:
Since we know that,
P = VI
where;
P = power
V= Voltage
I = Current
Since it's given that,
P = 600W
I = 2.5 A
equating these values in the above equation, we get;
<em>V =
</em>
<em>V = 240 V</em>
mass of iron block given as

density of iron block is

now the volume of the iron piece is given as


Now when this iron block is complete submerged in oil inside the beaker the buoyancy force on the iron block will be given as

here we know that
= density of liquid = 916 kg/m^3


Now for the reading of spring balance we can say the spring force and buoyancy force on the block will counter balance the weight of the block at equilibrium



So reading of spring balance will be 16.45 N
Now for other scale which will read the normal force of the surface we can write that normal force on the container will balance weight of liquid + container and buoyancy force on block



So the other scale will read 36.47 N
Answer:
3.135 kN/C
Explanation:
The electric field on the axis of a charged ring with radius R and distance z from the axis is E = qz/{4πε₀[√(z² + R²)]³}
Given that R = 58 cm = 0.58 m, z = 116 cm = 1.16m, q = total charge on ring = λl where λ = charge density on ring = 180 nC/m = 180 × 10⁻⁹ C/m and l = length of ring = 2πR. So q = λl = λ2πR = 180 × 10⁻⁹ C/m × 2π(0.58 m) = 208.8π × 10⁻⁹ C and ε₀ = permittivity of free space = 8.854 × 10⁻¹² F/m
So, E = qz/{4πε₀[√(z² + R²)]³}
E = 208.8π × 10⁻⁹ C × 1.16 m/{4π8.854 × 10⁻¹² F/m[√((1.16 m)² + (0.58 m)²)]³}
E = 242.208 × 10⁻⁹ Cm/{35.416 × 10⁻¹² F/m[√(1.3456 m² + 0.3364 m²)]³}
E = 242.208 × 10⁻⁹ Cm/35.416 × 10⁻¹² F/m[√(1.682 m²)]³}
E = 6.839 × 10³ Cm²/[1.297 m]³F
E = 6.839 × 10³ Cm²/2.182 m³F
E = 3.135 × 10³ V/m
E = 3.135 × 10³ N/C
E = 3.135 kN/C
Answer:
Explanation:
Let electric potential at A ,B and C be Va , Vb and Vc respectively.
Work done = charge x potential difference
Wab = q ( Va - Vb )
Wac = q ( Va - Vc )
Given
Wac = - Wab / 3
3Wac = - Wab
Now
Wbc = q ( Vb - Vc )
= q [ ( Va-Vc ) - ( Va - Vb )]
= Wac - Wab
= Wac + 3Wac
= 4Wac