Answer:
2.5 m/s²
Explanation:
You can solve the following equation: F=ma for acceleration.
You'll be left with this:
a=F/m
And then you substitute the force and the doubled mass
a=500N/200kg
a=2.5 m/s²
Answer:
B) Yes, but only those electrons with energy greater than the potential difference established between the grid and the collector will reach the collector.
Explanation:
In the case when the collector would held at a negative voltage i.e. small with regard to grid So yes the accelerated electrons would be reach to the collecting plate as the kinetic energy would be more than the potential energy that because of negative potential
so according to the given situation, the option b is correct
And, the rest of the options are wrong
Answer:
1.195 m
2.8375 s
2.21433 rad/s
Explanation:
d = Distance = 2.39 m
N = Number of cycles = 8
t = Time to complete 8 cycles = 22.7 s
Radius would be equal to the distance divided by 2

The radius is 1.195 m
Time period would be given by

Time period of the motion is 2.8375 s
Angular speed is given by

The angular speed of the motion is 2.21433 rad/s
Answer:
The direction of the contact forces acting on a body is not necessarily perpendicular to the contact surface. The resolution of contact forces in two components i.e. perpendicular to contact surface and along surface. Perpendicular component is normal force and parallel component is friction.
Explanation:
Answer:
proof in explanation
Explanation:
First, we will calculate the number of half-lives:

where,
n = no. of half-lives = ?
t = total time passed = 2100 million years
= half-life = 700 million years
Therefore,

Now, we will calculate the number of uranium nuclei left (
):

and the rest of the uranium nuclei will become thorium nuclei (
)

dividing both:

<u>Hence, it is proven that after 2100 million years there are seven times more thorium nuclei than uranium nuclei in the rock.</u>