Answer:
They collide, couple together, and roll away in the direction that <u>the 2m/s car was rolling in.</u>
Explanation:
We should start off with stating that the conservation of momentum is used here.
Momentum = mass * speed
Since, mass of both freight cars is the same, the speed determines which has more momentum.
Thus, the momentum of the 2 m/s freight car is twice that of the 1 m/s freight car.
The final speed is calculated as below:
mass * (velocity of first freight car) + mass * (velocity of second freight car) = (mass of both freight cars) * final velocity
(m * V1) + (m * V2) = (2m * V)
Let's substitute the velocities 1m/s for the first car, and - 2m/s for the second. (since the second is opposite in direction)
We get:

solving this we get:
V = - 0.5 m/s
Thus we can see that both cars will roll away in the direction that the 2 m/s car was going in. (because of the negative sign in the answer)
There is no acceleration of g in the x direction because the gravitational acceleration points downward. Also, on most studies we ignore the tidal forces since we are dealing with small bodies compared to the size of the earth.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
Answer:
The period of a wave is the time for a particle on a medium to make one complete vibrational cycle. Period, being a time, is measured in units of time such as seconds, hours, days or years. The period of orbit for the Earth around the Sun is approximately 365 days; it takes 365 days for the Earth to complete a cycle.
The formula for the period of wave is: wave period is equals to 1 over the frequency.

To get the value of period of wave you need to divide 1 by 200 Hz. However, beforehand, you have to convert 200 Hz to cycles per second. So that would be, 200 cyles per second or 200/s.
By then, you can start the computation by dividing 1 by 200/s. Since 200/s is in fractional form, you have to find its reciprocal form and multiply it to one which would give you 1 (one) second over 200. This would then lead us to the value
0.005 seconds as the wave period.
wave period= 1/200 Hz
Convert Hz to cycles per second first
200 Hz x 1/s= 200/second
Make 200/second as your divisor, so:
wave period= 1/ 200/s
get the reciprocal form of 200/s which is s/200
then you can start the actual computation:
wave period= 1 x s divided by 200
this would give us an answer of
0.005 s.
Hey there!:
Here the Statement - D is correct.
Because Orbitals containing the core electrons are more attracted towards nuclear charge and hence less shilded from nuclear charge than an orbital that doesn't penetrate. Also due to more attraction between the orbital containing core electron and nucleus, it will have less energy.
Hope this helps!