I am not sure but i think the answer is C
It will sink because mass does not affect the physical properties of the object.
You can make sure there's no change in volume by keeping
your gas in a sealed jar with no leaks. Then you can play with
the temperature and the pressure all you want, and you'll know
that the volume is constant.
For 'ideal' gases,
(pressure) times (volume) is proportional to (temperature).
And if volume is constant, then
(pressure) is proportional to (temperature) .
So if you increase the temperature from 110K to 235K,
the pressure increases to (235/110) of where it started.
(400 kPa) x (235/110) = 854.55 kPa. (rounded)
Obviously, choice-b is the right one, but
I don't know where the .46 came from.
Answer:
Answered
Explanation:
The radius of curvature of the mirror R = 20 cm
then the focal length f = R/2 = 10 cm
(a) From mirror formula
1/f = 1/di + /1do
then the image distance
di = fd_o / d_o - f
= (10)(40) / 40-10
= 30.76 cm
since the image distance is positive so the image is real
ii) when the object distance d_0=20 cm
di = 10×20/ 20-10
= 20
Hence, the image must be real
iii)when the object distance d_0 = 10
di = 10×10 / 10-10 = ∞ (infinite)
the image will be formed at ∞
here also image will be real but diminished.
Answer:
Cost of 1000 kilowatt hour = 6000 cents
Explanation:
Given that
Electricity cost is 6 cents per kilowatt hour.
And we have to found out the cost for one megawatt hour
We know that
1 kilowatt = 1000 watt
1 megawatt = = 1000000 watt
1 megawatt = 1000 kilowatt
1 megawatt hour = 1000 kilowatt hour
Given that cost of 1 kilowatt hour = 6 cents
So the cost of 1000 kilowatt hour = 6 x 1000 cents
Cost of 1000 kilowatt hour = 6000 cents