1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jok3333 [9.3K]
2 years ago
7

The electronics supply company where you work has two different resistors, R1 and R2, in its inventory, and you must measure the

values of their resistances. Unfortunately, stock is low, and all you have are R1 and R2 in parallel and in series - and you can't separate these two resistor combinations. You separately connect each resistor network to a battery with emf 39.0 V and negligible internal resistance and measure the power P supplied by the battery in both cases. For the series combination, P = 48.0 W; for the parallel combination, P = 256 W. You are told that R1>R2.
Calculate R1
Physics
1 answer:
elixir [45]2 years ago
3 0

Answer:

R₁ = 23.77 ohms and R₂ = 7.92 ohms

Explanation:

When connected in series, the equivalence resistance, R(eq) is given as

R(eq) = (R₁ + R₂)

When connected in parallel, the equivalence resistance, R(eq) is given as

[1/R(eq)] = [(1/R₁) + (1/R₂)]

R(eq) = (R₁R₂)/(R₁ + R₂)

The parallel and series combination are connected to a battery of emf 39.0 V with negligible internal resistance. And the power supplied is measured.

But power supplied is given as

P = IV = (V/R) V = (V²/R)

When connected in series, the power supplied is given as

P = 48.0 W,

V = 39.0 V,

R = R(eq) = (R₁ + R₂)

48 = (39²/R)

R = (39²/48)

R = 31.6875 ohms

R = (R₁ + R₂) = 31.6875

(R₁ + R₂) = 31.6875 (eqn 1)

When connected in series, the power supplied is given as

P = 256.0 W,

V = 39.0 V,

R = R(eq) = (R₁R₂)/(R₁ + R₂)

256 = (39²/R)

R = (39²/256)

R = 5.9414 ohms

R = R(eq) = (R₁R₂)/(R₁ + R₂) = 5.9414

(R₁R₂)/(R₁ + R₂) = 5.9414

But, recall eqn 1

(R₁ + R₂) = 31.6875

(R₁R₂)/(R₁ + R₂) = 5.9414

Substituting for (R₁ + R₂)

(R₁R₂)/(R₁ + R₂) = (R₁R₂)/31.6875 = 5.9414

(R₁R₂) = 31.6875 × 5.9414 = 188.2683

R₁ = (188.2683/R₂)

(R₁ + R₂) = 31.6875

Substituting for R₁

(188.2683/R₂) + R₂ = 31.6875

multiply through by R₂

188.2683 + R₂² = 31.6875R₂

R₂² - 31.6875R₂ + 188.2683 = 0

Solving the quadratic equation

R₂ = 23.77 ohms or 7.92 ohms

If R₂ = 23.77 ohms, R₁ = 7.92 ohms

If R₂ = 7.92 ohms, R₁ = 23.77 ohms

Since the question explains that R₁ > R₂

R₁ = 23.77 ohms and R₂ = 7.92 ohms

Hope this Helps!!!

You might be interested in
a graduated cylinder contains 60 ml of water. A rock is added and the water level rises to 90 ml. if the rock has a mass of 0.6k
Margarita [4]

Answer:

20g/ml

Explanation:

the mass must be in gram and 90-60 =30

so 600g/30ml =20g/ml

3 0
2 years ago
A wire with radius 23 cm has a current of 7 A which is distributed uniformly through its cross sectional area. If you were to us
Rina8888 [55]

Answer:

The magnetic induction of the magnetic field is  0.0005293 mT

Explanation:

Data given

I = 7 A = the total current in the wire

r = 23 cm = the radius of the wire = 0.23 meter

r' = 2cm = the measurement point, which should be inside the wire = 0.02 meter

Let's consider the current density is constant in the wire, ⇒  the current enclosed is a function of the enclosed area

I(enclosed) = Jπ r ²

we can  consider the current density  as the total current over the whole area:

I(enclosed) = I / (πr ²)  * πr' ²

I(enclosed) = (I* r'²)/ (r ²)  

with I =  total current in the wire = 7A

With r = the radius of wire = 0.23 meter

with r' = the distance of point from the center of wire  0.02 meter

We plug this into ampere's law:

∮ *B *dl =μ 0  * (I* r'²)/ (r ²)  

with B = Magnetic flux density (in Tesla) or magnetic induction

with dl = an infinitesimal element (a differential) of the curve C

with µ0 = the magnectic constant =  4π*10^−7 H/m

We can simplify this, by using an Amperian loop can write this as:

B *( 2 π r') =  μ 0  * (I* r'²)/ (r ²)  

Because the circumference of a circle is  2 π r , when we integrate over length at a distance  r ′  from the center of wire whose crossection is a circle we get  2 π r ′

When we isolate B, we get:

B = µo *(Ir'/2 π r ²)

B =  4π*10^−7 * ((7*0.02)/2*π*0.23²)

B =5.293 *10 ^-7 T  = 0.0005293 mT

The magnetic induction of the magnetic field is  0.0005293 mT

6 0
3 years ago
A cruise ship travels across a river at 25 meters per minute. If the river is 6200 meters wide, how long
EleoNora [17]

Answer:

248 minutes

Explanation:

6200/25=248

This means there is 248 25s in 6200

which means it will take 248 minutes to travel through the river

Also here's a neat trick:

The units for speed is meters/minute

The units for distance is meters

Dividing distance by speed will cancel out the meters and leave only the speed.

3 0
2 years ago
________ can occur when an analog connection creates an electromagnetic field around its conductors, inducing its waveforms on a
KatRina [158]

Answer:

Crosstalk

Explanation:

The answer is Crosstalk as this phenomenon is most commonly associated with analog phone call.

Now, crosstalk is defined as a disturbance caused by the electric or magnetic fields of one telecommunication signal which affects a signal in an adjacent circuit. In a telephone circuit, crosstalk could result in hearing part of a voice conversation from another circuit. Hence, the phenomenon that causes crosstalk is called electromagnetic interference (EMI). This may occur in microcircuits within computers and audio equipments including within network circuits. This term is also usually applied to optical signals that interfere with each other.

6 0
2 years ago
A transformer has a primary coil with 375 turns of wire and a secondary coil with 1,875 turns. An AC voltage source connected ac
Sonbull [250]

Answer:

The rms voltage (in V) measured across the secondary coil is 459.62 V

Explanation:

Given;

number of turns in the primary coil, Np = 375 turns

number of turns in the secondary coil, Ns = 1875 turns

peak voltage across the primary coil, Ep = 130 V

peak voltage across the secondary coil, Es = ?

\frac{N_P}{N_s} = \frac{E_p}{E_s} \\\\E_s = \frac{N_sE_p}{N_p} \\\\E_s = \frac{1875*130}{375} \\\\E_s = 650 \ V

The rms voltage (in V) measured across the secondary coil is calculated as;

V_{rms} = \frac{V_0}{\sqrt{2} } = \frac{E_s}{\sqrt{2} } \\\\V_{rms} = \frac{650}{\sqrt{2} } = 459.62 \ V

Therefore, the rms voltage (in V) measured across the secondary coil is 459.62 V

7 0
3 years ago
Other questions:
  • An isolated system allows which of the following to enter or exit
    9·2 answers
  • Graphs are____of relationships
    7·2 answers
  • We have to use either of these formulas
    15·1 answer
  • Two horses begin at rest. After a few seconds, horse A is traveling with a velocity of 10 m/s west, while horse B is traveling w
    8·1 answer
  • A negatively charged particle -q is placed at the center of a uniformly charged ring, where the ring has a total positive charge
    9·1 answer
  • When we draw a diagram of the forces acting on an extended object, the tail of the force vector for the weight should be at?
    6·1 answer
  • The formulas for these two ?
    7·1 answer
  • ??????????????????????????????
    13·1 answer
  • 1 point
    8·1 answer
  • What is 2 chemical properties of acids and bases
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!