1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lisov135 [29]
3 years ago
15

In a classroom demonstration, students are using a Slinky to observe and learn about wave properties. If the Slinky has a period

of 0.333 seconds, what is the frequency?
Physics
1 answer:
Andrej [43]3 years ago
3 0

Answer:

Frequency = 3.0 Hertz

Explanation:

Given the following data;

Period = 0.333 seconds

To find the frequency;

Mathematically, frequency of a wave is given by the formula;

Frequency = 1/period

Substituting into the formula, we have;

Frequency = 1/0.333

Frequency = 3.0 Hertz

You might be interested in
A horizontal net force F is exerted on an object at rest. The object starts at x=0 m and has a speed of 4.0 m/s after moving 4.0
Alex_Xolod [135]

Explanation:

The solution is be found in the attachment.

8 0
3 years ago
Why does the mass spectrum of Br2 contain three signals whose heights are almost in the ratio of 1:2:1? What are the origins of
Eddi Din [679]
<span>The element bromine has two isotopes: Br-79 and Br-81, with a 50%-50% isotopic abundance. Statistically, 25% of bromine molecules will be Br79-Br79, 25% will be Br81-Br81 and 50% will be Br79-Br81. This is equivalent to a ratio of 1:1:2 or 1:2:1. The peaks in a mass spectrum just like chromatography reflect this relative abundance of different isotopic combinations.</span>
3 0
3 years ago
Keeping the mass at 1.0 kg and the velocity at 10.0 m/s, record the magnitude of centripetal acceleration for each given radius
Paha777 [63]

Answer:

The centripetal acceleration for the first radius; 2.0 m = 50 m/s²

The centripetal acceleration for the second radius; 4.0 m = 25 m/s²

The centripetal acceleration for the third radius; 6.0 m = 16.67 m/s²

The centripetal acceleration for the fourth radius; 8.0 m = 12.5 m/s²

The centripetal acceleration for the fifth radius; 10.0 m = 10 m/s²

Explanation:

Given;

mass of the object, m = 1 kg

velocity of the object, v = 10 m/s

different values of the radius, 2.0 m 4.0 m 6.0 m 8.0 m 10.0 m

The centripetal acceleration for the first radius; 2.0 m

a_c = \frac{v^2}{r} \\\\a_c_1= \frac{(10)^2}{2} \\\\a_c_1= 50 \ m/s^2

The centripetal acceleration for the second radius; 4.0 m

a_c_2= \frac{(10)^2}{4} \\\\a_c_2= 25 \ m/s^2

The centripetal acceleration for the third radius; 6.0 m

a_c_3= \frac{(10)^2}{6} \\\\a_c_3= 16.67 \ m/s^2

The centripetal acceleration for the fourth radius; 8.0 m

a_c_4= \frac{(10)^2}{8} \\\\a_c_4= 12.5 \ m/s^2

The centripetal acceleration for the fifth radius; 10.0 m

a_c_5= \frac{(10)^2}{10} \\\\a_c_5= 10 \ m/s^2

6 0
3 years ago
1) draw a simple circuit with a voltage source and four resistors wired in series
Norma-Jean [14]

Answer:

1)

In this circuit (see attachment #1), we have:

- A voltage source: in this case, we choose a battery. A voltage source is a device producing an electromotive force (in a battery, this is done by means of a chemical reaction), which is responsible for "pushing" the electrons along the circuit and creating a current. The electromotive force (emf) of the battery is also called voltage, and it is indicated with the letter V.

- Four resistors: a resistor is a device which opposes to the flow of current. The property that describes by "how much" the resistor "opposes" to the flow of current is called "resistance", and it is indicated with the letter R.

- In this circuit, the 4 resistors are in series. Resistors are said to be in series when they are connected along the same branch of the circuit, so that the same current flow across each of them.

- For resistors in series, the equivalent resistance of the circuit is given by the sum of the individual resistances:

R=R_1+R_2+...+R_n

2)

In this circuit (see attachment #2), we have:

- A voltage source: as before, we have chosen a battery, providing an electromotive  force to the circuit

- Three resistors wired in parallel. Resistors are said to be connected in parallel when they are connected along different branches, but with their terminals connected to the same point, so that each of them has the same potential difference across it.

- For resistors in parallel, the equivalent resistance of the circuit is calculated using the formula:

\frac{1}{R}=\frac{1}{R_1}+\frac{1}{R_2}+...+\frac{1}{R_n}

3)

In this circuit (see attachment #3), we have:

- A voltage source (again, we have choosen a battery)

- Three resistors, of which:

-- 2 of them are connected in parallel with each other

-- the 3rd one it is in series with the first two

If we call R_1,R_2 the resistances of the first 2 resistors in parallel, their equivalent resistance is:

\frac{1}{R_{12}}=\frac{1}{R_1}+\frac{1}{R_2}\\\rightarrow R_{12}=\frac{R_1 R_2}{R_1+R_2}

Then, these two resistors are connected in series with resistor R_3; and so, the total resistance of this circuit will be:

R=R_{12}+R_3=\frac{R_1R_2}{R_1+R_2}+R_3=\frac{R_1R_2+R_3(R_1+R_2)}{R_1+R_2}

4)

In this circuit (see attachment #4), we have:

- A voltage source (again, a battery)

- We have 6 resistors, which are arranged as follows:

-- Two branches each containing 3 resistors

-- The two branches are in parallel with each other

So, the total resistance of the two branches are:

R_{123}=R_1+R_2+R_3

R_{456}=R_4+R_5+R_6

And since the two branches are in parallel, their total resistance will be:

\frac{1}{R}=\frac{1}{R_{123}}+\frac{1}{R_{456}}\\\rightarrow R=\frac{R_{123}R_{456}}{R_{123}+R_{456}}=\frac{(R_1+R_2+R_3)(R_4+R_5+R_6)}{R_1+R_2+R_3+R_4+R_5+R_6}

4 0
3 years ago
Which vehicle has the LEAST kinetic energy? 18-wheeler, minivan, car, or bike?
Whitepunk [10]

We can make pretty good guesses for their masses, but kinetic energy also depends on their speeds, which we don't know, and may change.

As an example ... If the truck, the van, the car, and the bike are all parked at the mall, then a scampering mouse has more kinetic energy than all of them combined.

As the question stands, no answer is possible.

7 0
3 years ago
Other questions:
  • Which area of physics involves using a compass in the woods?
    14·1 answer
  • Calculate the average orbital speed of Ceres in
    11·1 answer
  • When you set something down on the ground what kind of work is your arm doing
    10·2 answers
  • How does a projectile differ from an object in free fall?
    14·2 answers
  •  Why does a child in a wagon seem to fall backward when you give the wagon a sharp pull forward? 15. What force is needed to acc
    10·1 answer
  • Ignoring air resistance, if you throw a baseball from first base upwards toward a friend in left field, and the baseball leaves
    7·2 answers
  • Transforma las siguientes unidades utilizando factores de conversión (no vale poner el número solo) a. 85 atm a mmHg b. 60 Pa a
    13·1 answer
  • The end of Earth’s_______ that is tilted toward the Sun receives more energy from the Sun?
    11·1 answer
  • An object of mass m attached to a spring of force constant k oscillates with simple harmonic motion. The maximum displacement fr
    15·1 answer
  • If the atmospheric pressure is 15 lb/in, what is the corresponding downward force on the top of a horizontal square area 5 inche
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!