Answer:
The correct wording is
- Pressure increases with the depth of the fluid.
- A plane's engines produce thrust to push the plane forward.
- A fluid can be a liquid or a gas.
- A hydraulic device uses Pascal's principle to lift or move objects.
- lift is the upward force exerted on objects by fluids.
Explanation:
1. As you go deeper into a fluid,<em> there is more of it on top of you; </em>therefore, the pressure excreted on you is greater.
2. A plane's engines pushes the air in opposite direction, which according to newton's third law, produces necessary force to move the plane forward.
3. <em>A fluid has no fixed shape,</em> and it deforms under the influence of external forces applied—liquid and gases fit into this definition.
4. Pascal's principle <em>says that pressure applied on one region of the fluid must equal pressure transmitted to another region of the same fluid</em>. This principle is used in a hydraulic device to exert forces on fluids to lift objects that would otherwise be difficult to move.
5. By definition, the upward force exerted by the fluids on objects is the lift.
Answer:
Explanation:
Acceleration is equal to the change in velocity over the change in time, or
where the change in velocity is final velocity minus initial velocity. Filling in:
Note that I made the backward velocity negative so the forward velocity in our answer will be positive.
Simplifying that gives us:
and then isolating the final velocity, our unknown:
3.0(6.0) = v + 3.0 and
3.0(6.0) - 3.0 = v and
18 - 3.0 = v so
15 m/s = v and because this answer is positive, that means that the car is no longer rolling backwards (which was negative) but is now moving forward.
One simple way to losing weight is by calorie counting. Peter can go to his nutritionist and learn just how much calories he can have as intake per day to lose weight. The nutrition label on any food item lists the calories and their serving sizes. This can be used to keep track of how much calories Peter has taken each day, so as to not go over his daily limit.
Actually, they're not. There's a group of stars and constellations arranged
around the pole of the sky that's visible at any time of any dark, clear night,
all year around. And any star or constellation in the rest of the sky is visible
for roughly 11 out of every 12 months ... at SOME time of the night.
Constellations appear to change drastically from one season to the next,
and even from one month to the next, only if you do your stargazing around
the same time every night.
Why does the night sky change at various times of the year ? Here's how to
think about it:
The Earth spins once a day. You spin along with the Earth, and your clock is
built to follow the sun . "Noon" is the time when the sun is directly over your
head, and "Midnight" is the time when the sun is directly beneath your feet.
Let's say that you go out and look at the stars tonight at midnight, when you're
facing directly away from the sun.
In 6 months from now, when you and the Earth are halfway around on the other
side of the sun, where are those same stars ? Now they're straight in the
direction of the sun. So they're directly overhead at Noon, not at Midnight.
THAT's why stars and constellations appear to be in a different part of the sky,
at the same time of night on different dates.
The discovery which Carnot made was that THE DIFFERENCE IN THE TEMPERATURES BETWEEN THE HOT AND THE COLD RESERVOIRS DETERMINE HOW WELL A HEAT ENGINE WOULD WORK.
Sadi Carnot was a French engineer, He proposed a theoretical thermodynamic cycle in 1824. In his cycle, Said hold that the efficiency of a heat engine depends on the temperature difference between its hot reservoir and cold reservoir.