Answer:
The mass of 0.02 m³ of gold is 386 kilograms
Explanation:
Given:
The density of the gold = 19300 kg/m³.
The volume of gold = 0.02 m³
To Find:
The mass of gold = ?
Solution:
We know that density is mass divided per unit volume.
Thus mathematically
Density = \frac{mass}{volume}Density=
volume
mass
Rewriting in terms of mass ,
Mass = density * volume
On substituting the known values
Mass = 19300 kg/m³ * 0.02 m³
Mass = 386 kilograms
Learn more about Mass and Density:
Mass=?,volume=190,density=4
Mass 350 kg volume 175 density ans
This is not my answer I copied it but hope it helps:)
Choices 'C' and 'D' are both correct.
(Except in 'C', changing the temperature from 1°C to 3°C is not usually
described as 'cooling', and it's not the water's 'mass' that changes. But
water does contract in volume during that change.)
Answer:
Power = Current × Voltage
Explanation:
Units:
Power = Watts
Current = Àmperes
Voltage = Volts
Answer:
Acceleration
Explanation:
Its speed or velocity change
Answer: B. Concrete
Explanation:
Let N = reacting force pressing the bodies in context together (units in Newtons),
The question stated that the force pressing the two mounted/stacked objects together is equal to the weight of the object on top.
We need to start by finding the weight of the piece of wood.
friction is given by
f = μN
The value of f is 22.5,
and from the chart reference the coefficient of friction between wood and stone, μ is 0.30.
22.5 = 75. 0.30
Putting the values into the equation: 22.5 = 0.30N.
Divide both sides by 0.30 to find the value of N:
N= 22.5/0.3 = 75
Now that the piece of wood will be placed on another surface, its weight of 75 Newton is the force pressing the two bodies together.
To determine the new surface, you should find the new coefficient of friction by using the new value of the force of friction given 46.5:
46.5 = µ(75).
Divide both sides by 75 to isolate μ.
The refer chart also indicates that the coefficient of friction equals 0.62 between wood and concrete, so the new surface corresponding to 0.62 is the concrete, which is (B).