Answer: d. Remove one-half of the initial CaCO3.
Explanation: Le Chatelier's principle states that changes on the temperature, pressure, concentration and volume of a system will affect the reaction in an observable way. So in the reaction above:
A decrease in temperature will shift the equilibrium to the left because the reaction is exothermic, which means heat is released during the reaction. In other words, when you decrease temperature of a system, the equilibrium is towards the exothermic reaction;
A change in volume or pressure, will result in a production of more or less moles of gas. A increase in volume or in the partial pressure of CO2, the side which produces more moles of gas will be favored. In the equilibrium above, the shift will be to the left.
A change in concentration will tip the equilibrium towards the change: in this system, removing the product will shift the equilibrium towards the production of more CaCO3 to return to the equilibrium.
So, the correct answer is D. Remove one-half of the initial CaCO3.
Answer:
dilute solution
A solution containing less solute than the equilibrium amount is called a dilute solution. The solvent has a limited capacity to dissolve a solute.
Explanation:
YES. Do I get brainliest now?
Answer:
The correct answer is 0.11 mol O₂
Explanation:
The chemical equation for the reaction of acetylene (C₂H₂) with O₂ to produce carbon dioxide (CO₂) and water (H₂O) is the following:
2 C₂H₂(g) + 5 O₂(g) → 4 CO₂(g) + 2 H₂O(g)
The chemical equation is balanced : with the proper estequiometrical coefficients. According to this, 2 moles of C₂H₂ reacts with 5 moles of O₂ to give 4 moles of CO₂ and 2 moles of H₂O.
In order to calculate how many moles of O₂ are needed to produce 0.085 moles of CO₂, we multiply the 0.085 moles of CO₂ by the factor 5 moles O₂/4 moles CO₂ (because 4 moles of CO₂ are produced by 5 moles of O₂ according to the chemical equation):
0.085 moles CO₂ x (5 moles O₂/4 moles CO₂) = 0.10625 moles O₂ = 0.11 moles O₂
Answer:
Water, air, and food.
Explanation:
All living things need air water and food to live.