Answer:
ºC
Explanation:
We have to start with the variables of the problem:
Mass of water = 60 g
Mass of gold = 13.5 g
Initial temperature of water= 19 ºC
Final temperature of water= 20 ºC
<u>Initial temperature of gold= Unknow</u>
Final temperature of gold= 20 ºC
Specific heat of gold = 0.13J/gºC
Specific heat of water = 4.186 J/g°C
Now if we remember the <u>heat equation</u>:


We can relate these equations if we take into account that <u>all heat of gold is transfer to the water</u>, so:

Now we can <u>put the values into the equation</u>:

Now we can <u>solve for the initial temperature of gold</u>, so:

ºC
I hope it helps!
Answer:
92.72 kJ
Explanation:
2 N₂ (g) + O₂ (g) —-> 2 N₂O
According to question , one mole of N₂O requires 163.2 kJ of heat
Molecular weight of N₂O = 44 gm
25 g N₂O = 25 / 44 mole
25 / 44 mole will require 163.2 x 25 / 44 kJ
= 92.72 kJ
Answer:
Grams of mercury= 0.06 g of Hg
Note: The question is incomplete. The complete question is as follows:
A compact fluorescent light bulb contains 4 mg of mercury. How many grams of mercury would be contained in 15 compact fluorescent light bulbs?
Explanation:
Since one fluorescent light bulb contains 4 mg of mercury,
15 such bulbs will contain 15 * 4 mg of mercury = 60 mg
1 mg = 0.001 g
Therefore, 60 mg = 0.001 g * 60 = 0.06 g of mercury.
Compact fluorescent lightbulbs (CFLs) are tubes containing mercury and noble gases. When electricity is passed through the bulb, electron-streams flow from a tungsten-coated coil. They collide with mercury atoms, exciting their electrons and creating flashes of ultraviolet light. A phosphor coating on the inside of the tube absorbs this UV light flashes and re-emits it as visible light. The amount of mercury in a fluorescent lamp varies from 3 to 46 mg, depending on lamp size and age.
Sodium Chloride also known as table salt, the sodium has a positive charge and the chloride a negative so after ionization that leaves you with two negative charges because it takes the salt away. possibly disforming the atoms.<span />