Answer:
Complex System
Explanation:
Given that, a descriptive scientific investigation is one of the three main types of investigation which formulates and quantify the natural phenomenon. This natural phenomenon oftentimes involves Complex System, such as microscopic organisms, thereby, scientists often make observations to understand the interacting parts of this COMPLEX SYSTEM
Hence, the right answer is a COMPLEX SYSTEM
The answer is 33.33 %
The explanation:
According to the reaction equation:
MgCO3(s) + 2HCl (aq) --> MgCl2(aq) + H20(l) + CO2(g)
we can see that 1 mole of MCO3 will produce → 1 mole of CO2
-Now we need o get number of mole of CO2:
and when we have 0.22 g of CO2, so number of mole = mass / molar mass
moles = 0.22 g / 44 g/mol = 0.005 mole
∴ moles of Mg = moles of CO2 = 0.005 mole
∴ mass of Mg = moles * molar mass
= 0.005 * 84 /mol = 0.42 g
∴ Percent of MgCO3 by mass of Mg = 0.42 g / 1.26 * 100
= 33.33 %
An ideal gas is defined as one in which all collisions between atoms or molecules are perfectly eleastic and in which there are no intermolecular attractive forces. One can visualize it as a collection of perfectly hard spheres which collide but which otherwise do not interact with each other.
Happy to help
Answer:
0.35 atm
Explanation:
It seems the question is incomplete. But an internet search shows me these values for the question:
" At a certain temperature the vapor pressure of pure thiophene (C₄H₄S) is measured to be 0.60 atm. Suppose a solution is prepared by mixing 137. g of thiophene and 111. g of heptane (C₇H₁₆). Calculate the partial pressure of thiophene vapor above this solution. Be sure your answer has the correct number of significant digits. Note for advanced students: you may assume the solution is ideal."
Keep in mind that if the values in your question are different, your answer will be different too. <em>However the methodology will remain the same.</em>
First we <u>calculate the moles of thiophene and heptane</u>, using their molar mass:
- 137 g thiophene ÷ 84.14 g/mol = 1.63 moles thiophene
- 111 g heptane ÷ 100 g/mol = 1.11 moles heptane
Total number of moles = 1.63 + 1.11 = 2.74 moles
The<u> mole fraction of thiophene</u> is:
Finally, the <u>partial pressure of thiophene vapor is</u>:
Partial pressure = Mole Fraction * Vapor pressure of Pure Thiophene
- Partial Pressure = 0.59 * 0.60 atm
Answer:
Option B, HCO3 1-
Explanation:
The valence of Sodium ion is +1 and the valence of HCO3 is -1. Thus, sodium ion has an extra electron to be donated to complete its outer shell while HCO3 needs an electron to complete its outer shell
Hence Na will combine with HCO3 to form NaHCO3
Option B is correct