Answer:
A) Separating funnel method
B) Simple Distillation
C) Evaporation
D) Sublimation
E) It is based on the principle of separation whereby even though two substances are dissolved in the same solvent, their respective solubilities could be different. Thus, the component that has more solubility will rise fastest and will therefore get separated from the mixture.
Explanation:
A)
B) Kerosene and petrol are both miscible liquids and the difference in their boiling point temperature is not more than 25°C. Thus, we make use of Simple distillation.
C) Can be separated by evaporation where the water is boiled and it evaporates and leaves the salt behind
D) To separate camphor from salt, we use sublimation so the camphor can change directly from solid to the gas state without passing through the liquid state.
E) Chromatography is used to separate components of a mixture.
It is based on the principle of separation whereby even though two substances are dissolved in the same solvent, their respective solubilities could be different. Thus, the component that has more solubility will rise fastest and will therefore get separated from the mixture.
<span>0.06355391 mol
The balanced equation for the reaction is
Na2B4O7*10H2O + 2 HNO3 = 2 NaNO3 + 4 H3BO3 + 5 H2O
So for each mole of Borax to neutralize, it takes 2 moles of HNO3.
Calculate number of moles of Borax
0.2619 g / 381.372 g/mol = 0.0006867 mol
Moles of HNO3 used = 0.0006867 mol * 2 = 0.0013734 mol
Molarity is defined as moles per liter so divide the number of moles used by the volume in liters. So
0.0013734 / 0.02161 = 0.06355391 mol</span>
I am unsure if this is correct, but this might be the whole section:
- The top of the syringe is a circle. You need to compute its area for use in later computations of pressure values. Start by using a ruler to measure the diameter. Estimate to the nearest 0.01 cm. <em>Answer: </em><em>3.60 </em><em>cm</em>
- Divide by two to find the radius. Maintain significant figures. <em>Answer: </em><em>1.80 </em><em>cm</em>
- Substitute the radius into the formula A = πr² to find the area of the top of the syringe. Maintain significant figures. <em>Answer: </em><em>10.2 </em><em>cm²</em>