Mass of Cl₂ : 164.01 g
<h3>Further explanation</h3>
A mole is a number of particles(atoms, molecules, ions) in a substance
This refers to the atomic total of the 12 gr C-12 which is equal to 6.02.10²³, so 1 mole = 6.02.10²³ particles
Can be formulated :
N = n x No
N = number of particles
n = mol
No = 6.02.10²³ = Avogadro's number
mol Cl₂ :

mass Cl₂(MW=71 g/mol) :

Answer:
<em>A process that involves rearrangement of the molecular or ionic structure of a substance, as opposed to a change in</em> <u><em>physical form or a nuclear reaction.</em></u>
Explanation:
A process that involves rearrangement of the molecular or ionic structure of a substance, as opposed to a change in <u><em>physical form or a nuclear reaction.</em></u>
<h3><u> Answer</u>;</h3>
= 4.0 L
<h3><u>Explanation;</u></h3>
Boyle's law states that the volume of a fixed mass of a gas is inversely proportional to pressure at a constant temperature.
Therefore; <em>Volume α 1/pressure</em>
<em>Mathematically; V α 1/P</em>
<em>V = kP, where k is a constant;</em>
<em>P1V1 = P2V2</em>
<em>V1 = 0.5 l, P1 =203 kPa, P2 = 25.4 kPa</em>
<em>V2 = (0.5 × 203 )/25.4 </em>
<em> = 3.996 </em>
<em> ≈ </em><em><u>4.0 L</u></em>
Answer:
13.7 moles of O₂ are needed
Explanation:
In order to find the moles of reactants that may react to make the products we need to determine the reaction:
Reactants are hydrogen and oxygen
Product: Water
2 moles of hydrogen can react to 1 mol of oxygen and produce 2 moles of water.
Balanced reaction: 2H₂(g) + O₂(g) → 2H₂O(l)
If 2 moles of hydrogen need 1 mol of oxygen to react
Therefore, 27.4 moles of H₂ must need (27.4 .1) / 2 = 13.7 moles of O₂