Answer:
2n^2 electrons
Explanation:
for example, the first level contain 2*(1^2) = 2 electrons, the second level contain 2*(2^2) = 8 electrons, etc
Answer:
answer A
Explanation:
A) the quantity of usable energy declines with each transformation → True . Since the entropy increases , the amount of energy that can not be converted to useful energy increases and since the total amount of energy is conserved, the quantity of useful energy decreases.
B) energy can be neither created nor destroyed → False in the context of entropy , since the energy is conserved regardless of the changes in entropy (First law → conservation of energy vs second law → increase of entropy)
C) life should be impossible → False . Since the second law states that the entropy of the <u>universe </u>increases with time . Then the system (life) can experience a decrease in entropy at the expense of a larger increase in entropy of the surroundings ( so the net increase is positive)
D) it is not possible to observe an increase in molecular organisation → False . Same as C. A system can experience a decrease in entropy at the expense of a larger increase in entropy of the surroundings ( so the net increase is positive)
Answer:When a substance undergoes a chemical change some of the chemical changes can be reversed with a chemical change.
Explanation:
A chemical change changes all of the element but some chemical changes but very few can be changed back to its original substance only with a chemical change.
Answer:
An alkali metal present in period 2 have larger first ionization energy.
Explanation:
Ionization energy:
The amount of energy required to remove the electron from the atom is called ionization energy.
Trend along period:
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases and ionization energy increases because it is very difficult to remove the electron from atom and more energy is required.
Trend along group:
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
As the size of atom increases the ionization energy from top to bottom also decreases because it becomes easier to remove the electron because of less nuclear attraction and as more electrons are added the outer electrons becomes more shielded and away from nucleus. Thus alkali metal present in period 2 have larger ionization energy because of more nuclear attraction as compared to the alkali metal present in period 4.
Answer:
NH3(aq) + HNO3(aq) → NH4NO3(aq) Calculate the volume of an acid (1.5 M HNO3) needed to neutralize the 1.5 M HNO3.
Explanation: