Answer:

Explanation:
We are given that







We have to find the exit temperature.
By steady energy flow equation



Substitute the values




Answer:
a) 
b) 

Explanation:
Searching the missed information we have:
E: is the energy emitted in the plutonium decay = 8.40x10⁻¹³ J
m(⁴He): is the mass of the helium nucleus = 6.68x10⁻²⁷ kg
m(²³⁵U): is the mass of the helium U-235 nucleus = 3.92x10⁻²⁵ kg
a) We can find the velocities of the two nuclei by conservation of linear momentum and kinetic energy:
Linear momentum:


Since the plutonium nucleus is originally at rest,
:
(1)
Kinetic Energy:

(2)
By entering equation (1) into (2) we have:
Solving the above equation for
we have:

And by entering that value into equation (1):
The minus sign means that the helium-4 nucleus is moving in the opposite direction to the uranium-235 nucleus.
b) Now, the kinetic energy of each nucleus is:
For He-4:

For U-235:

I hope it helps you!
Kinetic energy<span>is the </span>energy<span> of body or a system with respect to the motion of the body or of the particles in the system. </span>Potential energy<span> is the stored </span>energy<span> in an object of system because of its position or configuration.</span>
Answer:
Velocity = 0.0001389 m/s
Explanation:
Given that the
Distance covered = 1 metre
Time taken = 2 hours
Convert the hour to second
1 hour = 60 × 60 = 3600
2 hours = 2 × 3600 = 7200
What is the velocity of a worm moving 1 meter in 2 hours to the East?
Velocity can be referred as speed.
Velocity = distance/ time
Velocity = 1/7200
Velocity = 0.0001389 m/s
Work is force times distance, so W = 40 N * 10 m = 400 J