The strength of the gravitational force between two objects depends<span> on </span>two<span>factors, </span>mass<span> and </span>distance<span>. the </span>force<span> of gravity the </span>masses<span> exert on each other. If one of the </span>masses<span> is doubled, the </span>force<span> of gravity </span>between<span> the </span>objects<span> is doubled. increases, the </span>force<span> of gravity decreases</span>
Answer:
Heat can travel from one place to another in three ways: Conduction, Convection and Radiation. Both conduction and convection require matter to transfer heat. Conduction is the transfer of heat between substances that are in direct contact with each other. Thermal energy is transferred from hot places to cold places by convection. Radiation is a method of heat transfer that does not rely upon any contact between the heat source and the heated object as is the case with conduction and convection. Heat can be transmitted through empty space by thermal radiation often called infrared radiation.
Explanation:
P.E = mgh
This is the formula for potential energy.
This is where m is mass, g is the acceleration due to gravity, and h is height.
All you have to do is multiply all these numbers together.
The final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.
To find the answer, we need to know about the thermodynamic processes.
<h3>How to find the final temperature of the gas?</h3>
- Any processes which produce change in the thermodynamic coordinates of a system is called thermodynamic processes.
- In the question, it is given that, the tank is rigid and non-conducting, thus, dQ=0.
- The membrane is raptured without applying any external force, thus, dW=0.
- We have the first law of thermodynamic expression as,

,

- Thus, the final temperature of the system will be equal to the initial temperature,

<h3>How much work is done?</h3>
- We found that the process is isothermal,
- Thus, the work done will be,

Where, R is the universal gas constant.
<h3>What is a reversible process?</h3>
- Any process which can be made to proceed in the reverse direction is called reversible process.
- During which, the system passes through exactly the same states as in the direct process.
Thus, we can conclude that, the final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.
Learn more about thermodynamic processes here:
brainly.com/question/28067625
#SPJ1