Answer:
Volume of the sample: approximately
.
Average density of the sample: approximately
.
Assumption:
.
.- Volume of the cord is negligible.
Explanation:
<h3>Total volume of the sample</h3>
The size of the buoyant force is equal to
.
That's also equal to the weight (weight,
) of water that the object displaces. To find the mass of water displaced from its weight, divide weight with
.
.
Assume that the density of water is
. To the volume of water displaced from its mass, divide mass with density
.
.
Assume that the volume of the cord is negligible. Since the sample is fully-immersed in water, its volume should be the same as the volume of water it displaces.
.
<h3>Average Density of the sample</h3>
Average density is equal to mass over volume.
To find the mass of the sample from its weight, divide with
.
.
The volume of the sample is found in the previous part.
Divide mass with volume to find the average density.
.
Answer:
A-B-C
Explanation:
Depends if you have good taste.
Explanation:
given solution
h=45m v^2=u^2+2gh
g=10m/s^2 v^2=0^2+2×10m/s^2×45m
vi=0 v^2=900m^2/s^2