Answer:
The velocity of the stone is 2.57 m/s.
Explanation:
Given that
Height = 0.337 m
We need to calculate the velocity of the stone
Using equation of motion

Where, v = velocity of stone
u = initial velocity
g = acceleration due to gravity
h = height
Put the value into the formula



Hence, The velocity of the stone is 2.57 m/s.
Answer:
3.69 m/s
Explanation:
Forces :
mgsin Θ - mumgcosΘ = ma
g x sinΘ - mu x g x cosΘ = a
9.8 x sin 21 - 0.53 x 9.8 x cos 21 = a
a = -1.337 m/s²
so you have final velocity = 0 m/s
initial velocity = ? m/s
Given d = 5.1 m
By kinematics
vf² = vo² + 2ad
0 = vo² + 2 x -1.337*5.1
vo = 3.69 m/s
Complete question:
The exit nozzle in a jet engine receives air at 1200 K, 150 kPa with negligible kinetic energy. The exit pressure is 80 kPa, and the process is reversible and adiabatic. Use constant specific heat at 300 K to find the exit velocity.
Answer:
The exit velocity is 629.41 m/s
Explanation:
Given;
initial temperature, T₁ = 1200K
initial pressure, P₁ = 150 kPa
final pressure, P₂ = 80 kPa
specific heat at 300 K, Cp = 1004 J/kgK
k = 1.4
Calculate final temperature;

k = 1.4

Work done is given as;

inlet velocity is negligible;

Therefore, the exit velocity is 629.41 m/s
Answer:
The correct answer is - option C. G.
Explanation:
In this reaction diagram, there is a representation of the reaction profile. The reaction profile shows the change that takes place during a reaction in the energy of reactants or substrate and products. In this profile, activation energy looks like a hump in the line, and the minimum energy required to initiate the reaction.
The overall energy of the reaction, including or excluding activation energy depends on the nature of the reaction if it is exothermic or endothermic. and products are represented by the G which shows the difference between the energy of the reactants and products.