Answer:
L = μ₀ n r / 2I
Explanation:
This exercise we must relate several equations, let's start writing the voltage in a coil
= - L dI / dt
Let's use Faraday's law
E = - d Ф_B / dt
in the case of the coil this voltage is the same, so we can equal the two relationships
- d Ф_B / dt = - L dI / dt
The magnetic flux is the sum of the flux in each turn, if there are n turns in the coil
n d Ф_B = L dI
we can remove the differentials
n Ф_B = L I
magnetic flux is defined by
Ф_B = B . A
in this case the direction of the magnetic field is along the coil and the normal direction to the area as well, therefore the scalar product is reduced to the algebraic product
n B A = L I
the loop area is
A = π R²
we substitute
n B π R² = L I (1)
To find the magnetic field in the coil let's use Ampere's law
∫ B. ds = μ₀ I
where B is the magnetic field and s is the current circulation, in the coil the current circulates along the length of the coil
s = 2π R
we solve
B 2ππ R = μ₀ I
B = μ₀ I / 2πR
we substitute in
n ( μ₀ I / 2πR) π R² = L I
n μ₀ R / 2 = L I
L = μ₀ n r / 2I
''Energy is destroyed because animals are higher levels do not need as much energy'' is not the valid reason.
<h3>What is respiration?</h3>
Respiration is the cellular process of releasing energy from food. Some of the energy released is used to produce ATP. 90 percent of energy is lost as heat energy whereas 10 percent energy is transferred to other trophic levels.
So we can conclude that ''Energy is destroyed because animals are higher levels do not need as much energy'' is not the valid reason.
Learn more about energy here: brainly.com/question/19666326
<span>Astronomers are able to determine facts about the composition of these moons by examining the nature of light that is reflected from their surfacy using a method called spectroscopy. This process works because different materials tend to reflect light at different wavelengths So, by observing at which wavelengths a planetary body reflects light, astronomers are able to estimate its composition.</span>
It is the number in front of the equation