Answer:
kb = 2,0x10⁻⁵
Explanation:
The ka for HCN is:
HCN ⇄ H⁺ + CN⁻; ka = 4,9x10⁻¹⁰ <em>(1)</em>
The inverse reaction has an equilibrium constant of:
H⁺ + CN⁻ ⇄ HCN k = 1/4,9x10⁻¹⁰ = 2,0x10⁹ <em>(2)</em>
As the equilibrium of the water is:
H₂O ⇄ H⁺ + OH⁻; kw = 1x10⁻¹⁴ <em>(3)</em>
The sum of (2) + (3) gives:
H₂O + CN⁻ ⇄ HCN + OH⁻; kb = kw×k = 1x10⁻¹⁴×2,0x10⁹ =
2,0x10⁻⁶; <em>kb = 2,0x10⁻⁵</em>
<em />
<em>-In fact, the general formula to convert from ka to kb is:</em>
<em>kb = kw / ka-</em>
<em />
I hope it helps!
There are 4 electron pairs (3 bonding and 1 lone pair) so the angle is 107 degrees. The 4 electron pairs are repelled to give a tetrahedral arrangement but the molecule has a pyrimidal shape due to the lone pair.
Answer:
C: object does not slide off the pan
Explanation:
Answer:
q = 40.57 kJ; w = -3.10 kJ; strong H-bonds must be broken.
Explanation:
1. Heat absorbed
q = nΔH = 1 mol × (40.57 kJ/1 mol) = 40.57 kJ
2. Change in volume
V(water) = 0.018 L
pV = nRT
1 atm × V = 1 mol × 0.082 06 L·atm·K⁻¹mol⁻¹ × 373.15 K
V = 30.62 L
ΔV = V(steam) - V(water) = 30.62 L - 0.018 L = 30.60 L
3. Work done
w = -pΔV = - 1 atm × 30.60 L = -30.60 L·atm
w = -30.60 L·atm × (101.325 J/1 L·atm) = -3100 J = -3.10 kJ
4. Why the difference?
Every gas does 3.10 kJ of work when it expands at 100 °C and 1 atm.
The difference is in the heat of vaporization. Water molecules are strongly hydrogen bonded to each other, so it takes a large amount of energy to convert water from the liquid phase to the vapour phase.
Answer:
half lives passed=5
given sample=90g
sample left=2.8125g
Explanation:
no. of half lives=total time/half life
no.=19days/3.8days
no.=5 days
after 5 half lives sample left=2.8125g