Answer:
0.861 L
Explanation:
We are given pressure, volume, and temperature, so let's apply the Combined Gas Law:
(P₁V₁)/T₁ = (P₂V₂)/T₂
Convert the temperatures to degrees Kelvin.
25.0°C -> 298 K, 100.0°C -> 373 K
Plug in the initial conditions on the left, then the final/new on the right, and solve for the unknown:
(165(2.5))/298 = (600(V₂))/373
V₂ = (165(2.5)(373))/(298(600))
V₂ = 0.861 L
Iron (iii) chloride is obtained by vapor condensation from the reaction between chlorine gas and iron fillings.
<h3>How can iron (iii) chloride be formed from iron fillings?</h3>
Iron (ii) chloride can be formed from iron fillings in the laboratory as follows:
- Iron fillings + Cl₂ → FeCl₃
Chlorine gas is introduced into a reaction vessel containing iron fillings and the iron (iii) chloride vapor formed is obtained by condensation.
In conclusion, iron (iii) chloride is formed by the the direct combination of iron fillings and chlorine gas.
Learn more about iron (iii) chloride at: brainly.com/question/14653649
#SPJ1
Characteristics of a medium wave. They are <span>Wavelengths in this band are long enough that radio waves are not blocked by buildings and hills and can propagate beyond the horizon following the curvature of the Earth; this is called the </span>ground wave<span>. Practical groundwave reception typically extends to 200–300 miles, with longer distances over terrain with higher </span>ground conductivity<span>, and greatest distances over salt water. Most broadcast stations use ground wave to cover their listening area. Hope this helps. :)</span>
Answer:
Their identity changes in both Reaction A and Reaction B.
Answer and
Explanation
I believe the correct answer would be the last option. When an electrons moves from an excited state to the ground state, it would release energy. An electron in the excited state would mean that it contains high kinetic energy so to move to a lower state some of these energy should be released.