Answer:
The speed of the cart and clay after the collision is 50 cm/s .
Explanation:
Given :
Mass of lump , m = 500 g = 0.5 kg .
Velocity of lump , v = 30 cm/s .
Mass of cart , M = 1 kg .
Velocity of cart , V = 60 cm/s .
We know by conservation of momentum :

Here ,
is the speed of the cart and clay after the collision .
Putting all value in above equation .
We get :

Hence , this is the required solution .
Answer:
True.
Explanation:
Don't turn wide to the left as you start the turn. A driver behind may think you are turning left and try to pass you on the right. You may crash into the other vehicle as you complete your turn.
Instead, slowly give yourself and others more time to avoid problems, keep the rear of the vehicle close to the curb. This will stop other drivers from passing you on the right. This is called (button Hook)
If you are driving a truck or bus that cannot make the right turn without swinging into the other lane, turn wide as you complete the turn.
Answer:
(a) ε = 1373.8.
(b) The wingtip which is at higher potential.
Explanation:
(a) Finding the potential difference between the airplane wingtips.
Given the parameters
wingspan of the plane is = 18.0m
speed of the plane in north direction is = 70.0m/s
magnetic field of the earth is = 1.20μT
The potential difference is given as:
ε = Blv
where ε = potential difference of wingtips
B = magnetic field of earth
l = wingspan of airplane
v = speed of airplane
ε = 1.2 x 18.0 x 63.6
ε = 1373.8
(b) Which wingtip is at higher potential?
The wingtip which is at higher potential.
Answer:
40 N/m
Explanation:
The diagram attached is used to answer the question
We know from Hooke's law that extension is directly proportional to the applied force hence
F=kx where x is extension, F is applied force and k is the spring constant. Making k the subject of the formula then

From the attached diagram extension is given by subtracting unstretched spring from stretched spring hence extension, x=1-0.5=0.5m
Substituting 20 N for F and 0.5 m for x then

Answer:
8.8 kN
Explanation:
V = 2 m³, W = 40 kN, SG = 1.59
Bouyant force N = 1.59 * 1000 kg/m³ * 9.81 N/kg * 2 m³ = 31.2 kN
So the weight becomes 40 - 31.2 = 8.8 kN