Answer:
h = 23.716 m
Explanation:
Given that,
The time taken by the stone to hit the water is, t = 2.2 s
Height of the bridge above the ground, h = ?
The distance that the body will fall through the time is given by the formula
S = 1/2 gt² m
Where,
g - acceleration due to gravity
Substituting the values in the above equation
S = 1/2 x 9.8 m/s² x (2.2 s)²
= 23.716 m
Therefore, the height of the bridge from the surface of the water is h = 23.716 m
In Rutherford's gold foil experiment, some of the positive particles would pass through the foil and some would bounce off. This led to a new theory that all of the positive subatomic particles were in the center of the atom instead of evenly spread throughout.
The vertical component of the initial velocity is 
The horizontal component of the initial velocity is 
The horizontal displacement when the object reaches maximum height is 
The given parameters;
the horizontal displacement of the object, = x
the vertical displacement of the object, = y
acceleration due to gravity, = g
time of motion, = t
The vertical component of the initial velocity is given as;

The horizontal component of the initial velocity is calculated as;

The time to reach to the maximum height is calculated as;

The horizontal displacement when the object reaches maximum height is calculated as;

Learn more here: brainly.com/question/20689870
Answer:
r = 20 m
Explanation:
The formula for the angular momentum of a rotating body is given as:
L = mvr
where,
L = Angular Momentum = 10000 kgm²/s
m = mass
v = speed = 2 m/s
r = radius of merry-go-round
Therefore,
10000 kg.m²/s = mr(2 m/s)
m r = (10000 kg.m²/s)/(2 m/s)
m r = 5000 kg.m ------------- equation 1
Now, the moment of inertia of a solid uniform disc about its axis through its center is given as:
I = (1/2) m r²
where,
I = moment of inertia = 50000 kg.m²
Therefore,
50000 kg.m² = (1/2)(m r)(r)
using equation 1, we get:
50000 kg.m² = (1/2)(5000 kg.m)(r)
(50000 kg.m²)/(2500 kg.m) = r
<u>r = 20 m</u>
Answer:
Orbital Time Period is 24 years
Explanation:
This can be explained by the definition of time period.
Time period can be defined as the time taken by an object to complete one cycle, here, time taken to complete one revolution.
Also, we know that an extra solar planet which is also called as an exo planet is that planet which is outside our solar system and orbits any star other than our sun. The system in consideration is extra solar system with a single planet.
Therefore, the time taken by the parent star to move about its mass center is the orbital time period that is 24 years.