Answer:
a) {[1.25 1.5 1.75 2.5 2.75]
[35 30 25 20 15] }
b) {[1.5 2 40]
[1.75 3 35]
[2.25 2 25]
[2.75 4 15]}
Explanation:
Matrix H: {[1.25 1.5 1.75 2 2.25 2.5 2.75]
[1 2 3 1 2 3 4]
[45 40 35 30 25 20 15]}
Its always important to get the dimensions of your matrix right. "Roman Columns" is the mental heuristic I use since a matrix is defined by its rows first and then its column such that a 2 X 5 matrix has 2 rows and 5 columns.
Next, it helps in the beginning to think of a matrix as a grid, labeling your rows with letters (A, B, C, ...) and your columns with numbers (1, 2, 3, ...).
For question a, we just want to take the elements A1, A2, A3, A6 and A7 from matrix H and make that the first row of matrix G. And then we will take the elements B3, B4, B5, B6 and B7 from matrix H as our second row in matrix G.
For question b, we will be taking columns from matrix H and making them rows in our matrix K. The second column of H looks like this:
{[1.5]
[2]
[40]}
Transposing this column will make our first row of K look like this:
{[1.5 2 40]}
Repeating for columns 3, 5 and 7 will give us the final matrix K as seen above.
Answer:
Explanation:
The picture attached shows all the necessary explanations
A.) Cubic meters is your answer
Cubic meters are used to measure the volume of solids.
hope this helps
Answer:
0.9Ns
Explanation:
Impulse formula is expressed as;
Impulse = Ft = m(v-u)
Impulse = m(v-u)
m is the mass of football = 0.45kg
v is the final velocity = 22m/s
u is the initial velocity = 0m/s
Impulse = 0.45(22-0)
Impulse = 0.45 * 22
Impulse = 0.9Ns
Hence the magnitude of the impulse imparted to the receiver by the ball is 0.9Ns
Answer:
Speed = 2.25 m/s
Explanation:
(Assume a running step is 1.5 m long)
Given the following data;
Energy = 0.6J
Power = 61 Watts
Mass = 68 kg
To find how fast the person running;
First of all, we would determine the total mechanical energy being dissipated by the person.
Total energy = 0.6 * 68
Total energy = 40.8 Joules
Next, we find the time;
Energy = power * time
40.8 = 61 * time
Time = 61/40.8
Time = 1.5 seconds
Finally, to find the speed;
Speed = distance/time
Speed = number of steps * time
Speed = 1.5 * 1.5
Speed = 2.25 m/s