Answer:
A blackbody, or Planckian radiator, is a cavity within a heated material from which heat cannot escape. No matter what the material, the walls of the cavity exhibit a characteristic spectral emission, which is a function of its temperature.
Example:
Emission from a blackbody is temperature dependent and at high temperature, a blackbody will emit a spectrum of photon energies that span the visible range, and therefore it will appear white. The Sun is an example of a high-temperature blackbody.
Answer:
304.89m
Explanation:
Given
acceleration a = 2.52m/s²
final speed v = 39.2m/s
initial speed = 0m/s (car accelerates from rest)
Using the equation of motion below to get the distance of Doc brown from Marty;
v² = u²+2as
substitute the given parameters
39.2² = 0²+2(2.52)s
1536.64 = 0+5.04s
divide both sides by 5.04
1536.64/5.04 = 5.04s/5.04
rearrange the equation
5.04s/5.04 = 1536.64/5.04
s = 304.89m
Hence He and Marty must stand at 304.89m to allow the car to accelerate from rest to a speed of 39.2 m/s?
Given :
Number of operations move through a pocket calculator during a full day's operation ,
.
To Find :
How many coulombs of charge moved through it .
Solution :
We know , charge in one electron is :

So , charge on n electron is :

Therefore , -21.44 coulombs of charge is moved through it .
Hence , this is the required solution .
Answer:
The force will have to increase
Explanation:
Since Juan has upgraded from a sports car to a large truck, based on Newton's second law of motion, the force needed to keep the truck going at the same speed will have to increase.
According to Newton's second law "the force on an object is equal to the product of its mass and acceleration".
Force = mass x acceleration
A truck has a larger mass compared to a sports car.
By virtue of this, to make sure both automobiles attain the same speed, the force powering them to accelerate must be the same.
Therefore, the force from the engine must increase.
Answer:
d= 7.32 mm
Explanation:
Given that
E= 110 GPa
σ = 240 MPa
P= 6640 N
L= 370 mm
ΔL = 0.53
Area A= πr²
We know that elongation due to load given as



A= 42.14 mm²
πr² = 42.14 mm²
r=3.66 mm
diameter ,d= 2r
d= 7.32 mm