It's average speed during that 26 seconds was about 4.77 m/s. Without seeing the graph, we can't tell if it was going faster or slower at any particular time during that period. All we can tell is its average for the full interval.
Answer:
14m/s
Explanation:
Given parameters:
Radius of the curve = 50m
Centripetal acceleration = 3.92m/s²
Unknown:
Speed needed to keep the car on the curve = ?
Solution:
The centripetal acceleration is the inwardly directly acceleration needed to keep a body along a curved path.
It is given as;
a =
a is the centripetal acceleration
v is the speed
r is the radius
Now insert the parameters and find v;
v² = ar
v² = 3.92 x 50 = 196
v = √196 = 14m/s
ELECTROSTATIC:
relating to stationary electric charges or fields as opposed to electric currents.
NEUTRAL:
nor negative nor positive/having no charge
POSITIVELY CHARGED:
positive charge occurs when the number of protons exceeds the number of electrons
NEGATIVELY CHARGED:
negative charge occurs when the number of electrons exceeds the number of protons.
COULOMB:
SI unit for electric charge. One coulomb is equal to the amount of charge from a current of one ampere flowing for one second.
MICROCOULOMB:
a unit of electrical charge equal to one millionth of a coulomb.
NANOCOULOMB:
Nanocoulombs are a unit of charge 1,000,000,000 times smaller than Coulomb.
CONSERVATION OF CHARGE:
constancy of the total electric charge in the universe or in any specific chemical or nuclear reaction
QUANTISATION OF CHARGE:
Charge quantization is the principle that the charge of any object is an integer multiple of the elementary charge.
C Camera. I think this because you can make timelapses with cameras which makes it easy to see.