1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vsevolod [243]
3 years ago
6

How is the pressure exerted and the area on which it is exerted are related to each other?

Physics
1 answer:
andrezito [222]3 years ago
3 0
Pressure = force/area
You might be interested in
A 60 kilogram student jumps down from a laboratory counter. At the instant he lands on the floor hus speed is 3 meters per secon
erastovalidia [21]

As per Newton's law rate of change in momentum is net force

so we can write it as

F = \frac{dP}{dt}

F = \frac{m(v_f - v_i)}{\Delta t}

now we know that

m = 60 kg

v_f = 3 m/s

v_i = 0

\Delta t= 0.2 s

from above equation

F = \frac{60(3 - 0)}{0.2} = 900 N

so he will experience 900 N force in above case

5 0
3 years ago
What is the difference between a physical quantity and a unit​
Shalnov [3]

Answer: What is the difference of physical quanity and a unit?

Explanation: If you are working science or math problems, the answer to this question is that quantity is the amount or numerical value, while the unit is the measurement. For example, if a sample contains 453 grams, the quantity is 453 while the unit is grams.

4 0
3 years ago
A 2.0 kg sphere with a velocity of 6.0 m/s collides head-on and elastically with a stationary 10 kg sphere
dmitriy555 [2]

Question: A 2.0 kg sphere with a velocity of 6.0 m/s collides head-on and elastically with a stationary 10 kg sphere, What is thier velocities after collision.

Answer:

v = 6 m/s, v' = 0 m/s

Explanation:

From the question,

For Elastic collision,

mu+m'u' = mv+m'v'......................... Equation 1

Where m = mass of the first sphere, m' = mass of the second sphere, u = initial velocity of the first sphere, u' = initial velocity of the second sphere, v = final veolocity of the first sphere, v' = final velocity of the second sphere.

Also,

The relative velocity before collision = relative velocity after collision

u-u' = v-v'............................ Equation 2

Given:  m = 2 kg, m' = 10 kg, u = 6 m/s, u' = 0 m/s

Substitute into equation 1 and 2

2(6)+10(0) = 2v+10v'

2v+10v' = 12.............. Equation 3

6-0 = v-v'

v-v' = 6 ................... Equation 4

Solve equation 3 and 4 simultaneously.

v = 6+v'............. Equation 5

Substitute equation 5 into equation 3

2(6+v')+10v' = 12

12+2v'+10v' = 12

12v' = 12-12

v' = 0/12

v' = 0 m/s.

Also substitute the value of v' into equation 5

v = 6+0

v = 6 m/s

5 0
3 years ago
If you had an unlimited amount of mass to hang, what would be the range of possible accelerations for the system?
LenaWriter [7]

Answer:

The entire cart/hanging mass system follows the same law, ΣF = ma. This means that plotting force vs. acceleration yields a linear relationship (of the form y = mx).

3 0
2 years ago
How much heat is needed to raise the temperature of 50.0 g of water by 25.0°C
love history [14]

Answer:

Explanation:

In order to be able to solve this problem, you will need to know the value of water's specific heat, which is listed as

c

=

4.18

J

g

∘

C

Now, let's assume that you don't know the equation that allows you to plug in your values and find how much heat would be needed to heat that much water by that many degrees Celsius.

Take a look at the specific heat of water. As you know, a substance's specific heat tells you how much heat is needed in order to increase the temperature of

1 g

of that substance by

1

∘

C

.

In water's case, you need to provide

4.18 J

of heat per gram of water to increase its temperature by

1

∘

C

.

What if you wanted to increase the temperature of

1 g

of water by

2

∘

C

? You'd need to provide it with

increase by 1

∘

C



4.18 J

+

increase by 1

∘

C



4.18 J

=

increase by 2

∘

C



2

×

4.18 J

To increase the temperature of

1 g

of water by

n

∘

C

, you'd need to supply it with

increase by 1

∘

C



4.18 J

+

increase by 1

∘

C



4.18 J

+

...

=

increase by n

∘

C



n

×

4.18 J

Now let's say that you wanted to cause a

1

∘

C

increase in a

2-g

sample of water. You'd need to provide it with

for 1 g of water



4.18 J

+

for 1 g of water



4.18 J

=

for 2 g of water



2

×

4.18 J

To cause a

1

∘

C

increase in the temperature of

m

grams of water, you'd need to supply it with

for 1 g of water



4.18 J

+

for 1 g of water



4.18 J

+

,,,

=

for m g of water



m

×

4.18 J

This means that in order to increase the temperature of

m

grams of water by

n

∘

C

, you need to provide it with

heat

=

m

×

n

×

specific heat

This will account for increasing the temperature of the first gram of the sample by

n

∘

C

, of the the second gram by

n

∘

C

, of the third gram by

n

∘

C

, and so on until you reach

m

grams of water.

And there you have it. The equation that describes all this will thus be

q

=

m

⋅

c

⋅

Δ

T

, where

q

- heat absorbed

m

- the mass of the sample

c

- the specific heat of the substance

Δ

T

- the change in temperature, defined as final temperature minus initial temperature

In your case, you will have

q

=

100.0

g

⋅

4.18

J

g

∘

C

⋅

(

50.0

−

25.0

)

∘

C

q

=

10,450 J

Rounded to three sig figs and expressed in kilojoules, t

Explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • A certain metal wire has a cross sectional area of 1 mm2 and is 1 m long. when it is hung from the ceiling and a 10 kg mass is h
    10·1 answer
  • What is the speed of light?
    9·2 answers
  • Why does pumping a soccer ball with an air pump increase the pressure inside the ball? the pump puts more gas particles inside t
    13·2 answers
  • How can doctors best detect medical problems?
    14·2 answers
  • How much dirt is there in a hole 3 feet deep, 6 ft long and 4 ft wide?
    12·2 answers
  • A car pulled by a tow truck has an acceleration of 2.0 m/s^2. What is the mass of the car if the net force on the car is 3,500 N
    7·1 answer
  • The north pole of one bar magnet is near the south pole of another bar
    7·1 answer
  • Ginny is snowboarding down a ski slope. Her total mass (including the snowboard) is 68.5 kg. When she reaches the bottom of the
    7·2 answers
  • Rearrange the equation = KE<br> -1<br> 2<br> - my? to solve for v. Show your work.
    7·1 answer
  • compared to a solid wire of the same gauge, stranded wire? select one: a. has a slightly larger diameter b. will carry more curr
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!