1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Licemer1 [7]
3 years ago
13

A hollow spherical shell with mass 2.00kg rolls without slipping down a slope that makes an angle of 40.0^\circ with the horizon

tal. Find the magnitude of the acceleration a_cm of the center of mass of the spherical shell. Find the magnitude of the frictional force acting on the spherical shell.
Physics
2 answers:
jonny [76]3 years ago
6 0

Answer:

a_{cm} = 9.64m/s^2

Ff=6.42N

Explanation:

The sum of torque on the sphere is:

m*g*sin\theta*R=I*\alpha

m*g*sin\theta*R=2/3*m*R^2*\alpha

m*g*sin\theta*R=2/3*m*R*a_{cm}

Solving for a:

a_{cm}=9.64m/s^2

Now, the sum of forces will be:

m*g*sin\theta-Ff=m*a_{cm}

Solving for Ff:

Ff=m*g*sin\theta-m*a_{cm}

Ff=-6.42N    The negative sing tells us that it actually points downwards.

Pavel [41]3 years ago
5 0

Answer:

a) a = 3.783 m/s^2

b)  F_f = 5.045 N

Explanation:

Given:

- Mass of shell m = 2.0 kg

- Angle of slope Q = 40 degrees

- Moment of inertia of shell I = 2/3 *m*R^2

Find:

a) Find the magnitude of the acceleration a_cm of the center of mass of the spherical shell.

b) Find the magnitude of the frictional force acting on the spherical shell.

Solution:

- Draw a Free body diagram for the shell. We see that the gravitational force F_g acting parallel to the plane of the inclined surface makes the sphere to roll down. The frictional force  F_f between the inclined surface and the sphere gives the necessary torque for the sphere to roll down with out slipping. Under this conditions a sphere will roll down without slipping with some acceleration and the acceleration can be calculated from the equation of motion of the sphere:

                                      m*g*sin(Q) - F_f = m*a

- Where, The frictional force produces the torque and due to this torque the sphere gets an angular acceleration.

- Then we can write the equation for the rotational motion as:

                                      F_f*R = I*α

                                      F_f = I*α / R

- Using moment mass inertia of the shell we have:

                                      F_f = (2/3)*m*R^2*α/R

- Where the angular acceleration α is related to linear acceleration a with:

                                      α = a / R

- combing the two equations we will have friction force F_f as:

                                      F_f = (2/3)*m*R^2*a/R^2

                                      F_f = (2/3)*m*a

- Now evaluate the equation of motion:

                                      m*g*sin(Q) - (2/3)*m*a= m*a

- Simplify:

                                        (5/3)*a = g*sin(Q)

                                        a = (3/5)*g*sin(Q)

- Plug the values in:       a = (3/5)*9.81*sin(40)

                                        a = 3.783 m/s^2

- Now compute the Frictional force F_f from the expression derived above:

                                        F_f = (2/3)*m*a

- Plug values in:              F_f = (2/3)*2*3.783

                                        F_f = 5.045 N

                                           

You might be interested in
A negative charge is at rest at the origin of an axis system. Location x is at coordinate point (2m,3m) while location y is at (
Sergeu [11.5K]
The magnitude of the E-field decreases as the square of the distance from the charge, just like gravity.

Location ' x ' is  √(2² + 3²) = √13 m  from the charge.

Location ' y ' is √ [ (-3)² + (-2)² ] = √13 m from the charge.

The magnitude of the E-field is the same at both locations.

The direction is also the same at both locations ... it points toward the origin.


5 0
3 years ago
A baseball rolls off of a .7 m high desk and strikes the floor .25 m always how fast was the ball rolling
labwork [276]

Answer:

the ball's velocity was approximately 0.66 m/s

Explanation:

Recall that we can study the motion of the baseball rolling off the table in vertical component and horizontal component separately.

Since the velocity at which the ball was rolling is entirely in the horizontal direction, it doesn't affect the vertical motion that can therefore be studied as a free fall, where only the constant acceleration of gravity is affecting the vertical movement.

Then, considering that the ball, as it falls covers a vertical distance of 0.7 meters to the ground, we can set the equation of motion for this, and estimate the time the ball was in the air:

0.7 = (1/2) g t^2

solve for t:

t^2 = 1.4 / g

t = 0.3779  sec

which we can round to about 0.38 seconds

No we use this time in the horizontal motion, which is only determined by the ball's initial velocity (vi) as it takes off:

horizontal distance covered = vi * t

0.25 = vi * (0.38)

solve for vi:

vi = 0.25/0.38  m/s

vi = 0.65798  m/s

Then the ball's velocity was approximately 0.66 m/s

4 0
3 years ago
Write short letters.
Svetradugi [14.3K]

Answer:

No. 67

Peter Street

12th Road

Chennai

24th June 201_

Dear Amrish

I have come to know that since your school has closed for the Autumn Break you have plenty of free time at your disposal at the moment. I would like to tell you that even I am having holidays now.

It has been a long time since we have spent some time together. If you are free, I would welcome to have your company this weekend. Why don’t you come over to my house and spend a day or so with me?

I am anxiously waiting for your reply.

Yours affectionately

your name

4 0
3 years ago
Read 2 more answers
Help me please answer this
antiseptic1488 [7]

Answer:

that's fusion

Explanation:

8 0
3 years ago
Read 2 more answers
In this model, the velocity of the spacecraft at position 2 is the velocity of the craft at position 4. at position 1, the direc
Free_Kalibri [48]

1. The velocity of the spacecraft at position 2 is greater than the velocity of the craft at position 4.

This is due the gravity field of the Earth is used to accelerate the craft. This is true when in a specific point the direction of the movement of the craft is the same direction of the movement of the planet.

In this case the craft will be “catched” by the Earth’s gravitational field, making the craft  to enter a circular orbit.

2. At point 1, the direction of the spacecraft changes because of the gravitational force between earth and the spacecraft.

As explained in the first answer, this is the exact point where the trajectory of the spacecraft enters into a circular orbit because of the attraction due gravity of the Earth and therefore changes its direction.

3. Position 3 represents the orbital path of Earth

Being this the orbital path of the Earth and considering the trajectory of the craft, the condition of accelerating the craft is accomplished. If the orbital path of the Earth were the opposite, the effect on the craft would be braking.

Note all of these is related to the gravitational assistance, this consists in a maneuver in which the energy of the gravitational field of a planet or satellite is used to obtain an acceleration or braking of the probe or craft, changing its trajectory.

To learn more about velocity of the spacecraft : brainly.com/question/11900446

#SPJ4

7 0
1 year ago
Other questions:
  • Sarah added sugar to her iced tea, but it is not dissolving very quickly. Which can Sarah do to make the sugar dissolve faster?
    15·2 answers
  • Suppose that the average speed (vrms) of carbon dioxide molecules (molar mass 44.0 g/mol) in a flame is found to be 2.67 105 m/s
    5·1 answer
  • You are at the carnival with you your little brother and you decide to ride the bumper cars for fun. You each get in a different
    12·1 answer
  • The electric force between electric charges is much larger than the gravitational force between the charges. Why, then, is the g
    14·1 answer
  • An isotope of carbon has 6 protons and 8 neutrons.
    9·1 answer
  • A billiard ball is dropped from a height of 64 feet. Use the position function s(t) = –16???? 2 + ????0???? + ????0 to answer th
    6·1 answer
  • When a satellite orbits the earth?
    6·1 answer
  • The specific heat of acetic acid is 2.07 J/gºC. If 1150 J of heat is
    6·1 answer
  • Hernando builds a simple DC series circuit with a standard D-cell battery and uses an ammeter to determine that the total curren
    9·1 answer
  • After reading the scenario, write which of the 3 ways is demonstrated and explain
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!