Answer:
Explanation: you can choose B or C but i would choose C
If the object is moving in a straight line with constant speed,
that's a description of " acceleration = zero ".
Zero acceleration means zero net force on the object.
NO net force is 'required' to keep an object moving in a straight line
at constant speed. In fact, if there IS any net force on the object,
then either its speed or its direction MUST change ... there's no way
to avoid it.
None of this depends on the object's mass, or on the speed or direction
of its motion.
Answer:


Explanation:
Given that.
Force acting on the particle, 
Position of the particle, 
To find,
(a) Torque on the particle about the origin.
(b) The angle between the directions of r and F
Solution,
(a) Torque acting on the particle is a scalar quantity. It is given by the cross product of force and position. It is given by :




So, the torque on the particle about the origin is (32 N-m).
(b) Magnitude of r, 
Magnitude of F, 
Using dot product formula,




Therefore, this is the required solution.
Answer:
The value is 
Explanation:
From the question we are told that
The mass of matter converted to energy on first test is 
The mass of matter converted to energy on second test 
Generally the amount of energy that was released by the explosion is mathematically represented as

=> ![E = 1.5 *10^{-3} * [ 3.0 *10^{8}]^2](https://tex.z-dn.net/?f=E%20%3D%20%201.5%20%2A10%5E%7B-3%7D%20%20%2A%20%5B%203.0%20%2A10%5E%7B8%7D%5D%5E2)
=> 