Let u = initial vertical velocity.
Assume that
g = 9.81 m/s²,
Wind resistance is ignored.
When t = 0.220 s, the height is h = 0.537 m. Therefore
0.537 m = (u m/s)*(0.220 s) - (1/2)*(9.81 m/s²)*(0.220 s)²
0.537 = 0.22u - 0.2372
u = 3.519 m/s
The upward velocity after 0.220 s is
v = 3.519 - 9.81*0.22 = 1.363 m/s
At maximum height, the upward velocity is zero. The maximum height, H, is given by
(3.519 m/s)² - 2*(9.81 m/s²)*(H m) = 0
12.3834 - 19.6H = 0
H = 0.632 m
It goes higher by 0.632 - 0.537 = 0.095 m
Answers:
(a) The initial speed is 3.519 m/s.
(b) The speed at 0.537 m height is 1.363 m/s.
(c) It goes higher by 0.095 m.
The temperature increase of a substance is T=Q/m*c, where m is the mass, Q is the energy absorbed and c is the specific heat. So you can conclude that if the lead gets to a higher temperature, it must have a lower specific heat
Answer:b
Explanation:
Given
mass of first cart 
mass of second cart 
velocity of first cart 
conserving momentum



Initial kinetic Energy 


Final Kinetic Energy


Ratio of initial Kinetic Energy to the Final Kinetic Energy

Old Grandpy!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!