The acceleration of the boxes depends on the mass and weight.
we have a mass of 7 and 8 kilograms
if it took 25 N force to move box A, then you would take 25 and multiply by 8 then divide by 2.
It will leave you with 100 N.
finally take the sq rt of 100 to get 10
Answer:
As you know, the denser objects have more weight per unit of volume, this will mean that the force that pulls down these objects is a bit larger.
This will mean that the denser objects will always go to the bottom.
This clearly implies that the red liquid, the one with one of the smaller densities, can not be at the bottom.
There are some cases where a liquid with a small density may become a lot denser as the temperature or pressure changes, and in a case like that, we could see the red liquid at the bottom, but for this case, there is no mention of changes in the temperature nor in the pressure, so this can be discarded.
The only thing that makes sense is that the red part at the bottom is the base of the tube, and has nothing to do with the red liquid.
Answer:
Explanation:
Total resistance in the circuit
= EMF / current in the circuit
= 12 / .969
= 12.383 ohm
This resistance consists of 5 identical resistances in series
resistance of each resistor
= 12.383 / 5
= 2.476 ohm .
potential difference on each
= current x resistance of each
= .969 x 2.476
= 2.399 V
= 2.4 V
The amount of gravitational potential energy acquired by the rock is equal to:

where
m is the mass of the rock
g is the gravitational acceleration

is the increase in height of the rock
Substituting the data of the problem, we find

So, Natalie gave 220.7 J of energy to the rock.
The difference between speed and velocity is that the speed is a scalar quantity which means that you can say that this object has a speed of x m/s but you don't have to define its direction
while the velocity is a vector quantity which means that you have to express the velocity by which it moves in x,y and z directions and its norm is the speed