Answer:
See explanation below
Explanation:
The question is incomplete, however, I found a question very similar to this, and I'm assuming this is the question you are asking to answer. If it's not, please tell me which one it is. Here's a tip for you to get an idea of how to solve.
Picture 1, would be the original question. Picture 2 is the answer of it.
Now, This is a E1 reaction where this type of reactions are taking place in two steps. The first step is the formation of the carbon cation, this step is always slow. The secon step is the addition of a nucleophyle, or, in this case, formation of a pi bond, and we get a alkene.
Hope this can help you
Phosphoric acid is a weak acid, while rubidium hydroxide is a strong acid.
H₃PO₄ + RbOH --> Rb₃PO₄ + H₂O
We get Rb₃PO₄ because PO₄ has a charge of 3-, that is PO₄³⁻. Rb has a charge of 1+. You give the subscript of one the charge of the other as this is an ionic compound. So you end up with Rb₃PO₄, a neutral compound.
Now let's balance the equation:
H₃PO₄ + 3RbOH --> Rb₃PO₄ + 3H₂O
Answer:
<em><u>Glass that will sink</u></em>
- alkali zinc borosilicate with a density of 2.57 g/mL in a solution with a density of 2.46 g/mL
- potash soda lead with a density of 3.05 g/mL in a solution with a density of 1.65 g/mL
<em><u>Glass that will float</u></em>
- soda borosilicate with a density of 2.27 g/mL in a solution with a density of 2.62 g/mL
- alkali strontium with a density of 2.26 g/mL in a solution with a density of 2.34 g/mL
<em><u>Glass that will not sink or float</u></em>
- potash borosilicate with a density of 2.16 g/mL in a solution with a density of 2.16 g/mL
Explanation:
Density is the property of matter that states the ratio of the amount of matter, its mass, to the space occupied by it, its volume.
So, the mathematical expression for the density is:
By comparing the density of a material with the density of a liquid, you will be able to determine whether object will float, sink, or do neither when immersed in the liquid.
The greater the density of an object the more it will try to sink in the liquid.
As you must have experienced many times an inflatable ball (whose density is very low) will float in water, but a stone (whose denisty is greater) will sink in water.
The flotation condition may be summarized by:
- When the density of the object < density of the liquid, the object will float
- When the density of the object = density of the liquid: the object will neither float nor sink
- When the density of the object > density of the liquid: the object will sink.
<em><u>Glass that will sink</u></em>
- alkali zinc borosilicate with a density of 2.57 g/mL in a solution with a density of 2.46 g/mL, because 2.57 > 2.46.
- potash soda lead with a density of 3.05 g/mL in a solution with a density of 1.65 g/mL, because 3.05 > 1.65.
<u><em>Glass that will float</em></u>
- soda borosilicate with a density of 2.27 g/mL in a solution with a density of 2.62 g/mL, because 2.27 < 2.62.
- alkali strontium with a density of 2.26 g/mL in a solution with a density of 2.34 g/mL, because 2.26 < 2.34.
<em><u>Glass that will not sink or float</u></em>
- potash borosilicate with a density of 2.16 g/mL in a solution with a density of 2.16 g/mL, because 2.16 = 2.16
Answer: The value of equilibrium constant for new reaction is
Explanation:
The given chemical equation follows:
The equilibrium constant for the above equation is 
We need to calculate the equilibrium constant for the equation of 3 times of the above chemical equation, which is:
The equilibrium constant for this reaction will be the cube of the initial reaction.
If the equation is multiplied by a factor of '3', the equilibrium constant of the new reaction will be the cube of the equilibrium constant of initial reaction.
The value of equilibrium constant for reverse reaction is:
Hence, the value of equilibrium constant for new reaction is
It’s so hard but try
Nicole’s Tesla’s