<u>Answer:</u>
Perimeter = 20 units
x = 120°
<u>Step-by-step explanation:</u>
We are given a triangle ABC with known side lengths for all three sides and an inscribed circle.
We are to find the perimeter of triangle ABC and the value of x.
Perimeter of triangle ABC = 2 + 2 + 5 + 5 + 3 + 3 = 20 units
The kite shape at the end is a quadrilateral which has a sum of angles of 360 degrees.
Two out of four angles are right angles and one is 60 so we can find the value of x.
x = 360 - (90 + 90 + 60) = 120°
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

_________________________________

_________________________________

_________________________________

_________________________________
Thus ;
R = { - 7 , 1 , 9 , 17 }
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
The correct answer is (( D )) .
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
Given:
The quadratic equation is

To find:
The vertex of the given quadratic equation.
Solution:
If a quadratic function is
, then

We have,

It can be written as

...(i)
Here,
.



Putting
in (i), we get
On further simplification, we get
So, the vertex of the given quadratic equation is
.
Therefore, the correct option is A.
1: 200-75= r
2: 73-29= v
73-29=44
v=44
Step-by-step explanation:
<h2>13. </h2>

<h2>14.</h2>

<h2>15.</h2>
![\implies\sf{ {x}^{3} = 216 } \\ \\ \implies\sf{ x = \sqrt[3]{216} } \\ \\ \implies\sf{ x = 6 }](https://tex.z-dn.net/?f=%20%20%5Cimplies%5Csf%7B%20%7Bx%7D%5E%7B3%7D%20%3D%20216%20%7D%20%5C%5C%20%20%5C%5C%20%20%5Cimplies%5Csf%7B%20x%20%3D%20%20%20%5Csqrt%5B3%5D%7B216%7D%20%20%7D%20%20%20%5C%5C%20%20%5C%5C%20%5Cimplies%5Csf%7B%20x%20%3D%20%206%20%7D%20%20)