Answer:
4.15 m/s
Explanation:
Its given that acceleration is 0.1 m/s² with a direction opposite to the velocity. Since, the direction of acceleration is opposite to the velocity, this gives us a hint that the velocity is decreasing and so acceleration would be negative.
i.e.
acceleration = a = - 0.1 m/s²
Distance covered = S = 6m
Velocity after covering 6 meters = Final velocity =
= 4 m/s
We need to find the initial speed, which will be the same as the magnitude of initial velocity.
Initial velocity =
= ?
3rd equation of motion relates the acceleration, distance, final velocity and initial velocity as:

Using the known values in the formula, we get:

Thus, the initial speed of the ball was 4.15 m/s
Explanation:
The frequency of radio waves is 1.667 GHz
One portion of the same wave front travels 1.260 mm farther than the other before the two signals are combined.
There are two conditions for interference either constructive or destructive.
For constructive interference , the path difference is n times of wavelength and for destructive interference, the path difference is (n+1/2) times of wavelength
We can find wavelength in this case as follows :

If we divide path difference by wavelength,

It means that the path difference is 7 times of the wavelength. it means the two waves combine constructively and the value of m for the path difference between the two signals is 7.
Answer:

Explanation:
Using the tension in the spring and the force of the tension can by describe by
T = kx
, T = mg
Therefore:

With two springs, let, T1 be the tension in each spring, x1 be the extension of each spring. The spring constant of each spring is 2k so:


Solve to x1





Answer:
On Earth all bodies have a weight, or downward force of gravity, proportional to their mass, which Earth's mass exerts on them. Gravity is measured by the acceleration that it gives to freely falling objects. At Earth's surface the acceleration of gravity is about 9.8 metres (32 feet) per second per second.