Answer:
A book on its side exerts a greater force.
Explanation:
Pressure = Force / Area
Assuming that 1kg = 10N
2kg = 20N
Area of book lying flat = 0.3m × 0.2m
= 0.6m²
Pressure of book lying flat = 20N / 0.6m²
= 30Pa (1 s.f.)
Area of book on its side = 0.2m × 0.05m
= 0.01m²
Pressure of book on its side = 20N / 0.01m²
= 2000Pa (1 s.f.)
Since 2000Pa (1 s.f.) > 30Pa (1 s.f.), a book on its side applies greater pressure than lying flat.
The final speed of an airplane is v = 92.95 m/s
The rate of change of position of an object in any direction is known as speed i.e. in other word, Speed is measured as the ratio of distance to the time in which the distance was covered.
Solution-
Here given,
Acceleration a= 10.8 m/s2 .
Displacement (s)= 400m
Then to find final speed of airplane v=?
Therefore from equation of motion can be written as,
v²=u²+ 2as
where, u is initial speed, v is final speed ,a is acceleration and s is displacement of the airplane. Therefore by putting the value of a & s in above equation and (u =0) i.e. the initial speed of airplane is zero.
v²= 2×10.8 m/s²×400m
v²=8640m/s
v=92.95m/s
hence the final speed of airplane v =92.95m/s
To know more about speed
brainly.com/question/13489483
#SPJ4
Answer:
c) 11.9 yr
Explanation:
The orbital period is proportional to r^(3/2) and does not depend on the satellite's mass. Any object at Jupiter position will have the same orbital period regardless of mass.
By keppler's law we know that
T^2= r^3
T= orbital time period
r= mean distance of the planet from the Sun.
clearly, The orbital period does not depend on the satellite's mass
there, the correct answer will be c= 11.9 yr.
Answer:
B) Gets smaller
Explanation:
The difference of phase between current and voltage in a AC circuit is the phase angle and it depends on the value of Z ( circuit impedance)
Z = R + X where R is the resistive component and X the reactance component, which is due either to a presence of an inductor or a capacitor. In any case the total impedance depends on R the resistive, and the phase angle φ is:
tan⁻¹ φ = X/R
Have a look to a pure capactive circuit (we are talking about AC current) in this case current leads voltage by 90⁰. If we add a resistor in the circuit the current still will lead a voltage but in this condition the phase angle will be smaller,
If R increase, X/R decrease and tan⁻¹ φ also decrease