Answer:
Number of moles = 0.057 × 10⁻⁷ mol
Explanation:
Given data:
Mass of SiO₂ = 3.4 × 10⁻⁷ g
Number of moles = ?
Solution:
Number of moles = mass/molar mass
Molar mass of SiO₂ = 60 g/mol
by putting values,
Number of moles = 3.4 × 10⁻⁷ g / 60 g/mol
Number of moles = 0.057 × 10⁻⁷ mol
Answer:
The molarity of the solution is 1.1 
Explanation:
Molarity is a measure of the concentration of that substance that is defined as the number of moles of solute divided by the volume of the solution.
The molarity of a solution is calculated by dividing the moles of the solute by the volume of the solution:

Molarity is expressed in units 
In this case
- number of moles of solute= 0.564 moles
- volume= 0.510 L
Replacing:

Solving:
molarity= 1.1 
<u><em>The molarity of the solution is 1.1 </em></u>
<u><em></em></u>
Not very much because half the time the water is purified but just normal water in my area probably has serious levels of scarcity.
Answer:
4
Explanation:
Ionization energy can be defined as the energy required for an atom to lose its valence electron to form an ion. Hence, it deals with how easily an atom would lose its electron and form an ion. As the valence electrons are lossless bound to the outermost shell, they can easily be lost without much problem or better still they can be lost easily. Hence, the energy change here is small and thus we can conclude that the ionization energy here is low.
The electron affinity works quite differently from the ionization energy. It deals with the way in which a neutral atom attracts an electron to form an ion. For an electron with loose valence electrons, the sure fact is that it does not really need these electrons. Hence, there is no need for an high electron affinity on its part. Thus, we conclude that the electron affinity is also low