Answer:
The answer is B) The law of conservation of energy.
Explanation:
This is the answer because energy cannot be created or be destroyed in a isolated system. The second law as well states that the entropy of any isolated system always increases.
<span>1.4 moles of aluminium metal is exposed to 1.35 mol of oxygen
Theoretical yield=0.007 mol
calculate % yield
% yield= actual yield/theoretical yield*100
% yield= 0.938/0.700*100
% yield= 13.4% yield</span>
Answer:
20L is the new volume
Explanation:
In this case, moles and T° from the gas remain constant. This is the formula we must apply, to solve this:
P₁ . V₁ = P₂ . V₂
5 atm . 10 L = P₂ . 2.5L
P₂ = (5 atm . 10 L) / 2.5L →20L
Volume of NaOH required to react = 145.5 ml
<h3>Further explanation</h3>
Reaction
CO₂(g)
+ 2 NaOH(aq) ⇒Na₂CO₃(aq) + H₂O(l)
The volume of CO₂ : 0.45 L
mol CO₂ at STP (O C, 1 atm) ⇒ at STP 1 mol gas 22.4 L :

From the equation, the mol ratio of CO₂ : NaOH = 1 : 2, so mol NaOH :

Then volume of NaOH :
