Answer:
P = I V power produced by source at voltage V thru resistance R
I = V / R current thru resistance R
P = V^2 / R
Power produced will decrease as the output resistance R increases
Check: if R increases to ∞ the power produced will go to zero
<span>Lifting an object increases the gravitational potential energy of the system. If you release the object, that potential energy will be transformed into the energy of an object in motion which is termed as the kinetic energy as it falls toward earth. Hope this helps.</span>
The first thing you should know is that the friction force is equal to the coefficient of friction due to normal force.
Therefore, clearing the normal force we have:
The friction is 565N.
(565 / 0.8) = 706.25N. weight.
Answer:
A. 6.282
B. 2.03kg
Explanation:
A.
We solve using archimedes principle
L³pwood = L²dwater
We make d subject of the formula
d = Lpwood/pester
= 18x651/1000
= 18x0.651
= 11.718cm
Distance from horizontal top to water level
= 18-11.718
= 6.282cm
B.
When we place lead block
WL + L³pwoodg = L³pwaterg
WL = L³g(Pwater-Pwood)
= 0.18³x9.8(1000-651)
= 19.94N
19.94/9.8
= 2.03kg
The mass m is therefore 2.03kg