1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Georgia [21]
2 years ago
7

Please help with this!!!!!

Physics
1 answer:
34kurt2 years ago
4 0
(1.00 atm) (0.1156 L) = (n) (0.08206 L atm / mol K) (273 K)  I hoped that helped
You might be interested in
Help
Roman55 [17]
A it’s liter okkkkkkkk
6 0
3 years ago
Part 1: Use complete sentences to explain why solar winds occur. Part 2: Give two examples in which solar winds impact Earth.
Troyanec [42]

Part 1

When the solar atmosphere accumulates a lot of magnetic energy to a point that cannot accumulate more, all that magnetic energy is suddenly released, and with it, a lot of radiation. So much, that in fact it covers all of the electromagnetic spectrum; from radio waves to gamma rays. That burst of radiation is called a solar flare. In a single solar flare the amount of radiation released is millions of times greater than all the nuclear bombs in the face if the earth exploding together. Lucky for us, most of the high-energy radiation dissipates before reaching the Earth, and the radiation that do reach us, is deflected by the Earth’s magnetic field.

Part 2

1.  Not all the radiation of solar flares that reach the Earth is deflected by its magnetic field; some of them reach us and charges the upper atmosphere with ionized particles. Those particles react with the gases in the atmosphere and produce a light; that light is what we call Auroras borealis or southern nights; One the most beautiful natural spectacles in earth, who thought Auroras begin their lives as deadly solar flares.

2.  Solar flares contain a lot of high-energy radiation that is extremely dangerous for our electronic devices; when they reach the Earth, they can damage sensible electronics like satellites. A very powerful solar flare could even damage all the electronic devices on the surface of the Earth.

4 0
2 years ago
Which temperature scale has no negative temperatures A. Celsius B. Joule C. Fahrenheit D. Kelvin
Brilliant_brown [7]
The Kelvin scale has no negatives on it.

Zero Kelvin is 'Absolute Zero', and nothing can get colder than that.
6 0
2 years ago
Read 2 more answers
Kenitic Energy (KE)<br> 1.doubled
astra-53 [7]

Answer:

mass

Explanation:

This energy of motion is what we call kinetic energy. ... In fact, kinetic energy is directly proportional to mass: if you double the mass, then you double the kinetic energy. Second, the faster something is moving, the greater the force it is capable of exerting and the greater energy it possesses.

pls make as brainlieast

3 0
2 years ago
A mass is oscillating with amplitude A at the end of a spring.
Dmitry_Shevchenko [17]

A) x=\pm \frac{A}{2\sqrt{2}}

The total energy of the system is equal to the maximum elastic potential energy, that is achieved when the displacement is equal to the amplitude (x=A):

E=\frac{1}{2}kA^2 (1)

where k is the spring constant.

The total energy, which is conserved, at any other point of the motion is the sum of elastic potential energy and kinetic energy:

E=U+K=\frac{1}{2}kx^2+\frac{1}{2}mv^2 (2)

where x is the displacement, m the mass, and v the speed.

We want to know the displacement x at which the elastic potential energy is 1/3 of the kinetic energy:

U=\frac{1}{3}K

Using (2) we can rewrite this as

U=\frac{1}{3}(E-U)=\frac{1}{3}E-\frac{1}{3}U\\U=\frac{E}{4}

And using (1), we find

U=\frac{E}{4}=\frac{\frac{1}{2}kA^2}{4}=\frac{1}{8}kA^2

Substituting U=\frac{1}{2}kx^2 into the last equation, we find the value of x:

\frac{1}{2}kx^2=\frac{1}{8}kA^2\\x=\pm \frac{A}{2\sqrt{2}}

B) x=\pm \frac{3}{\sqrt{10}}A

In this case, the kinetic energy is 1/10 of the total energy:

K=\frac{1}{10}E

Since we have

K=E-U

we can write

E-U=\frac{1}{10}E\\U=\frac{9}{10}E

And so we find:

\frac{1}{2}kx^2 = \frac{9}{10}(\frac{1}{2}kA^2)=\frac{9}{20}kA^2\\x^2 = \frac{9}{10}A^2\\x=\pm \frac{3}{\sqrt{10}}A

3 0
3 years ago
Other questions:
  • 2. If a rock fell down a cliff and hit the bottom of the ravine at 4 seconds, how fast was the rock
    7·2 answers
  • Light of wavelength 610 nm falls on a slit that is 3.50×10^−3 mm wide. How far the first bright diffraction fringe is from the s
    11·1 answer
  • The video shows a collapsing cloud of interstellar gas, which is held together by the mutual gravitational attraction of all the
    11·1 answer
  • PLS HELP ASAP!
    7·1 answer
  • A mass resting on a horizontal, frictionless surface is attached to one end of a spring; the other end is fixed to a wall. It ta
    14·1 answer
  • _____ contains chemical energy.<br> A. Heat<br> B. Light<br> C. Natural gas
    9·2 answers
  • Why does the sky change colors at sunset?
    9·1 answer
  • 15. A car travelling towards the right has a mass of 1332 kg and has a speed of 25 m/s. A truck is
    15·1 answer
  • Small pieces of sand hitting the side of a mountain and weathering the rock is an example of what type of weathering?
    12·1 answer
  • What is Archimedes principle?​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!