Answer:
Fr = 48 [N] forward.
Explanation:
Suppose the movement is on the X axis, in this way we have the force of the engine that produces the movement to the right, while the force produced by the brake causes the vehicle to decrease its speed in this way the sign must be negative.
∑F = Fr
![F_{engine}-F_{brake} =F_{r}\\F_{r}=79-31\\F_{r}=48[N]](https://tex.z-dn.net/?f=F_%7Bengine%7D-F_%7Bbrake%7D%20%3DF_%7Br%7D%5C%5CF_%7Br%7D%3D79-31%5C%5CF_%7Br%7D%3D48%5BN%5D)
The movement remains forward, since the force produced by the movement is greater than the braking force.
There are several approaches. The most favourable one (in my opinion) is this one:
1. Asking a question
2. Doing a research (how to answer this question)
3. Creating a hypothesis (NOT a thesis!)
4. Experimenting (to prove the hypothesis)
5. Analysing results from the experiment
6. Writing a thesis
Answer:
33.33j+6.67i km/hr
Explanation:
From the law of conservation of momentum,
Applying,
mu+m'u' = V(m+m')............... Equation 1
Where m = mass of the truck, m' = mass of the car, u = initial velocity of the truck, u' = initial velocity of the car, V = Final velocity.
Note: let j represent the north, and i represent the east
From the question,
Given: m = 1500 kg, u = 60j, m' = 1200 kg, u' = 15i
Substitute these values into equation 1
1500*60j+1200*15i = V(1500+1200)
90000j+18000i = 2700V
V = (90000j+18000i)/2700
V = 33.33j+6.67i km/hr
<h3>Option B</h3><h3>The time constant of a 10 H inductor and a 200 ohm resistor connected in series is 50 millisecond</h3>
<em><u>Solution:</u></em>
Given that,
10 H inductor and a 200 ohm resistor connected in series
To find: time constant
<em><u>The time constant in seconds is given as:</u></em>

Where,
L is the inductance in henry and R is the resistance in ohms

Convert to millisecond
1 second = 1000 millisecond
0.05 second = 0.05 x 1000 = 50 millisecond
Thus time constant is 50 millisecond
The answswer would be d because there is a battery, and a metal clip to conduct electricity.
hope this helps! C: