This problem involves Newton's universal law of gravitation and the equation to follow would be.
F = GM₁M₂/r²
Given: M₁ = 0.890 Kg; M₂ = 0.890 Kg; F = 8.06 x 10⁻¹¹ N; G = 6.673 X 10⁻¹¹ N m²/Kg²
Solving for distance r = ?
r = √GM₁M₂/F
r = √(6.673 x 10⁻¹¹ N m₂/Kg²)(0.890 Kg)(0.890 Kg)/ 8.06 x 10⁻¹¹ N
r = 0.81 m
I don't know what the exact word is, but I do know that the bigger an objects mass is the more it will attract other objects toward it, mainly smaller objects with less mass. it might be gravity or something around those lines....is it a multiple choice question?
Answer:
Explanation:
a ) Slit separation d = .1 x 10⁻³ m
Screen distance D = 4 m
wave length of light λ = 650 x 10⁻⁹ m
Width of central fringe = λ D / d
= 
= 26 mm
b ) Distance between 1 st and 2 nd bright fringe will be equal to width of dark fringe which will also be equal to 26 mm
c ) Angular separation between the central maximum and 1 st order maximum will be equal to angular width of fringe which is equal to
λ / d
= 
= 6.5 x 10⁻³ radian.
Answer:
The resolution of an analog-to-digital converter is 24.41 mV
Explanation:
Resolution of an analog-to-digital = (analogue signal input range)/2ⁿ
where;
n is the number or length of bit, and in this question it is given as 12
Also, the analogue signal input range is 100V
Resolution of an analog-to-digital = 100V/2¹²
2¹² = 4096
Resolution of an analog-to-digital = 100V/4096
Resolution of an analog-to-digital = 0.02441 V = 24.41 mV
Therefore, the resolution of an analog-to-digital converter is 24.41 mV
Answer:
The object will not move.
Explanation:
If nothing pushes against it it will not move. If its not on a slant it will not move.