The kinetic energy at the bottom of the swing is also 918 J.
Assume the origin of the coordinate system to be at the lowest point of the pendulum's swing. A pendulum, when raised to the highest point has potential energy since it is raised to a height h above the origin. At the highest point, the pendulum's velocity becomes zero, hence it has no kinetic energy. Its energy at the highest point is wholly potential.
When the pendulum swings down from its highest position, it gains velocity. Hence a part of its potential energy begins to convert itself into kinetic energy. If no dissipative forces such as air resistance exist, then, the law of conservation of energy can be applied to the swing.
Under the action of conservative forces, the total mechanical energy of a system remains constant.This means that the sum of the potential and kinetic energies of a body remains constant.
When the pendulum reaches the lowest point of its swing, it is at the origin of the chosen coordinate system. Its vertical displacement from the origin is zero, hence its potential energy with respect to the origin is zero. Therefore the entire potential energy of 918 J should have been converted into kinetic energy, according to the law of conservation of energy.
Thus, the kinetic energy of the pendulum at the lowest point of its swing is equal to the potential energy it had at its highest point, which is equal to <u>918 J.</u>
Answer:
Conditions under which the belt and pulleys are operating – The friction between the belt and pulley may decrease substantially if the belt happens to be muddy or wet, as it may act as a lubricant between the surfaces.
Explanation:
I hope that this would be helpful
Explanation:
The forces acting on a massless object (spring, hook, string or wire, if considered massless) will always balance. Balanced forces acting on an object cause it to compress or stretch. The forces acting on a mass will never cancel.
Surface waves from an earthquake shake the ground back and forth and up and down. So basically in a circular motion. This wave is the most dangerous wave released during and earthquake and it comes after the p and s waves. The Surface wave is the last wave that comes after the other 2. So yea' these surface waves move in a circular motion.