1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liberstina [14]
3 years ago
11

What happens to the current in a circuit if the resistance in the circuit is increased

Physics
2 answers:
8_murik_8 [283]3 years ago
7 0

Answer:

Current Flow and Ohm's Law

Ohm's law is the most important, basic law of electricity. It defines the relationship between the three fundamental electrical quantities: current, voltage, and resistance. When a voltage is applied to a circuit containing only resistive elements (i.e. no coils), current flows according to Ohm's Law, which is shown below.

I = V / R

Where:

I =

Electrical Current (Amperes)

V =

Voltage (Voltage)

R =

Resistance (Ohms)

Ohm's law states that the electrical current (I) flowing in an circuit is proportional to the voltage (V) and inversely proportional to the resistance (R). Therefore, if the voltage is increased, the current will increase provided the resistance of the circuit does not change. Similarly, increasing the resistance of the circuit will lower the current flow if the voltage is not changed. The formula can be reorganized so that the relationship can easily be seen for all of the three variables.

The Java applet below allows the user to vary each of these three parameters in Ohm's Law and see the effect on the other two parameters. Values may be input into the dialog boxes, or the resistance and voltage may also be varied by moving the arrows in the applet. Current and voltage are shown as they would be displayed on an oscilloscope with the X-axis being time and the Y-axis being the amplitude of the current or voltage. Ohm's Law is valid for both direct current (DC) and alternating current (AC). Note that in AC circuits consisting of purely resistive elements, the current and voltage are always in phase with each other.

Exercise: Use the interactive applet below to investigate the relationship of the variables in Ohm's law. Vary the voltage in the circuit by clicking and dragging the head of the arrow, which is marked with the V. The resistance in the circuit can be increased by dragging the arrow head under the variable resister, which is marked R. Please note that the vertical scale of the oscilloscope screen automatically adjusts to reflect the value of the current.

See what happens to the voltage and current as the resistance in the circuit is increased. What happens if there is not enough resistance in a circuit? If the resistance is increased, what must happen in order to maintain the same level of current flow?Explanation:

skad [1K]3 years ago
4 0
Answer: current decreases

V=IR
I=V/R

So by inspection we see if the resistance grows or increases then current will have to decrease.

Thanks
You might be interested in
Engineers tasked with building a car bumper need high-quality plastic that is readily available. They found the material polycar
jenyasd209 [6]

Answer:

The material must be durable (quality of the material requirement)

Explanation:

The design criteria set for the materials used for technological design are;

1) The materials should be affordable (less costly)

2) The materials should be last for a long duration (high durability)

3) The material should be readily available (easily sourced)

Therefore, given that the engineers initially had the criteria for the required plastic to be of high quality and to be readily available, and that the poly-carbonate they found is long lasting and not too costly, the criteria met that was set initially was the  quality criteria of durability.

7 0
3 years ago
Read 2 more answers
Physics B 2020 Unit 3 Test
weqwewe [10]

Answer:

1)

When a charge is in motion in a magnetic field, the charge experiences a force of magnitude

F=qvB sin \theta

where here:

For the proton in this problem:

q=1.602\cdot 10^{-19}C is the charge of the proton

v = 300 m/s is the speed of the proton

B = 19 T is the magnetic field

\theta=65^{\circ} is the angle between the directions of v and B

So the force is

F=(1.602\cdot 10^{-19})(300)(19)(sin 65^{\circ})=8.28\cdot 10^{-16} N

2)

The magnetic field produced by a bar magnet has field lines going from the North pole towards the South Pole.

The density of the field lines at any point tells how strong is the magnetic field at that point.

If we observe the field lines around a magnet, we observe that:

- The density of field lines is higher near the Poles

- The density of field lines is lower far from the Poles

Therefore, this means that the magnetic field of a magnet is stronger near the North and South Pole.

3)

The right hand rule gives the direction of the  force experienced by a charged particle moving in a magnetic field.

It can be applied as follows:

- Direction of index finger = direction of motion of the charge

- Direction of middle finger = direction of magnetic field

- Direction of thumb = direction of the force (for a negative charge, the direction must be reversed)

In this problem:

- Direction of motion = to the right (index finger)

- Direction of field = downward (middle finger)

- Direction of force = into the screen (thumb)

4)

The radius of a particle moving in a magnetic field is given by:

r=\frac{mv}{qB}

where here we have:

m=6.64\cdot 10^{-22} kg is the mass of the alpha particle

v=2155 m/s is the speed of the alpha particle

q=2\cdot 1.602\cdot 10^{-19}=3.204\cdot 10^{-19}C is the charge of the alpha particle

B = 12.2 T is the strength of the magnetic field

Substituting, we find:

r=\frac{(6.64\cdot 10^{-22})(2155)}{(3.204\cdot 10^{-19})(12.2)}=0.366 m

5)

The cyclotron frequency of a charged particle in circular motion in a magnetic field is:

f=\frac{qB}{2\pi m}

where here:

q=1.602\cdot 10^{-19}C is the charge of the electron

B = 0.0045 T is the strength of the magnetic field

m=9.31\cdot 10^{-31} kg is the mass of the electron

Substituting, we find:

f=\frac{(1.602\cdot 10^{-19})(0.0045)}{2\pi (9.31\cdot 10^{-31})}=1.23\cdot 10^8 Hz

6)

When a charged particle moves in a magnetic field, its path has a helical shape, because it is the composition of two motions:

1- A uniform motion in a certain direction

2- A circular motion in the direction perpendicular to the magnetic field

The second motion is due to the presence of the magnetic force. However, we know that the direction of the magnetic force depends on the sign of the charge: when the sign of the charge is changed, the direction of the force is reversed.

Therefore in this case, when the particle gains the opposite charge, the circular motion 2) changes sign, so the path will remains helical, but it reverses direction.

7)

The electromotive force induced in a conducting loop due to electromagnetic induction is given by Faraday-Newmann-Lenz:

\epsilon=-\frac{N\Delta \Phi}{\Delta t}

where

N is the number of turns in the loop

\Delta \Phi is the change in magnetic flux through the loop

\Delta t is the time elapsed

From the formula, we see that the emf is induced in the loop (and so, a current is also induced) only if \Delta \Phi \neq 0, which means only if there is a change in magnetic flux through the loop: this occurs if the magnetic field is changing, or if the area of the loop is changing, or if the angle between the loop and the field is changing.

8)

The flux is calculated as

\Phi = BA sin \theta

where

B = 5.5 T is the strength of the magnetic field

A is the area of the coil

\theta=18^{\circ} is the angle between the  direction of the field and the plane of the loop

Here the loop is rectangular with lenght 15 cm and width 8 cm, so the area is

A=(0.15 m)(0.08 m)=0.012 m^2

So the flux is

\Phi = (5.5)(0.012)(sin 18^{\circ})=0.021 Wb

See the last 7 answers in the attached document.

Download docx
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> docx </span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> pdf </span>
5 0
3 years ago
The temperature of a 700.96 gram piece of metal falls 120⁰C and in the process releases 2001 Joules of energy. What is the speci
olga nikolaevna [1]

Answer:

The specific heat for the metal is 0.466 J/g°C.

Explanation:

Given,

Q = 1120 Joules

mass = 12 grams

T₁ = 100°C

T₂ = 300°C

The specific heat for the metal can be calculated by using the formula

Q = (mass) (ΔT) (Cp)

ΔT = T₂ - T₁ = 300°C  - 100°C   = 200°C

Substituting values,

1120 = (12)(200)(Cp)

Cp = 0.466 J/g°C.

Therefore, specific heat of the metal is 0.466 J/g°C.

8 0
3 years ago
A refrigeration cycle has Qout = 1000 Btu and Wcycle = 300 Btu. Determine the coefficient of performance for the cycle.
DENIUS [597]

Answer:

The coefficient of performance for the cycle is 2.33.

Explanation:

Given that,

Output energy Q_{out}=1000\ Btu

Work done W_{cycle}=300\ Btu

We need to calculate the coefficient of performance

Using formula of  the coefficient of performance

COP=\dftrac{Q_{in}}{W_{cycle}}

We need to calculate the Q_{in}

W_{cycle}=Q_{out}-Q_{in}

Put the value into the formula

300=1000-Q_{in}

Q_{in}=300-1000

Q_{in}=700\ Btu

Now put the value of Q_{in} into the formula of COP

COP=\dfrac{700}{300}

COP=\dfrac{7}{3}=2.33

Hence, The coefficient of performance for the cycle is 2.33.

5 0
4 years ago
Ninas measurements shown in the table here BEST represent a wave with
Finger [1]
They best represent a wave with zero energy and zero amplitude.

There are no measurements shown in a table that accompanies
this question having any amplitude or energy greater than zero.
3 0
3 years ago
Read 2 more answers
Other questions:
  • A book weighing 12 n is placed on a table. how much support force does a table exert on the book?
    14·1 answer
  • How does the electrical force relate to the charge of an object?
    11·2 answers
  • Parallel perpendicular or neither y=6x-3 y=-1/6x + 7
    14·1 answer
  • I need these ASAP 20 POINTS!!
    15·1 answer
  • A 2.40 cm × 2.40 cm square loop of wire with resistance 1.20×10−2 Ω has one edge parallel to a long straight wire. The near edge
    12·1 answer
  • What causes the electric charges to flow from one end of the battery to the other? a balance in electric potential a balance in
    8·2 answers
  • The coefficients of friction between a race cars tyres and the track surface are
    8·1 answer
  • Would you expect to weigh more on an ocean beach or on top of a mountain? Explain.
    5·1 answer
  • Select the Moon and use the Info view to determine which of the following statements is correct. The Last Quarter Moon.... rises
    11·1 answer
  • How do collisions affect the momentum of objects?<br> HELP ASAP
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!