The answer is A. Only an object in motion has kinetic energy.
Rubber is a insulator so current cannot pass through it where as metal is a conductor which allows current to pass through it
Answer:
K/2
Explanation:
The law of conservation of mechanical energy states that the sum of the kinetic and potential energies is a constant at any point.
At maximum height, the glove has purely potential energy but at the bottom, it has purely kinetic energy.
The potential energy at the top = kinetic energy at the bottom. The potential energy is given by

At half height, this potential energy is

At this height, PE + KE = Constant = KE at bottom or PE at maximum height.


Answer:
6.0 m/s vertical and 9.0 m/s horizontal
Explanation:
For the vertical component, we use the formula:
- Sin(34°) = <em>y</em> / 10.8
Then we <u>solve for </u><u><em>y</em></u>:
- 0.559 = <em>y</em> / 10.8
And for the horizontal component, we use the formula:
- Cos(34°) = <em>x</em> / 10.8
Then we <u>solve for </u><u><em>x</em></u><u>:</u>
- 0.829 = <em>x</em> / 10.8
So the answer is " 6.0 m/s vertical and 9.0 m/s horizontal".