Answer:
T’= 4/3 T
The new tension is 4/3 = 1.33 of the previous tension the answer e
Explanation:
For this problem let's use Newton's second law applied to each body
Body A
X axis
T = m_A a
Axis y
N- W_A = 0
Body B
Vertical axis
W_B - T = m_B a
In the reference system we have selected the direction to the right as positive, therefore the downward movement is also positive. The acceleration of the two bodies must be the same so that the rope cannot tension
We write the equations
T = m_A a
W_B –T = M_B a
We solve this system of equations
m_B g = (m_A + m_B) a
a = m_B / (m_A + m_B) g
In this initial case
m_A = M
m_B = M
a = M / (1 + 1) M g
a = ½ g
Let's find the tension
T = m_A a
T = M ½ g
T = ½ M g
Now we change the mass of the second block
m_B = 2M
a = 2M / (1 + 2) M g
a = 2/3 g
We seek tension for this case
T’= m_A a
T’= M 2/3 g
Let's look for the relationship between the tensions of the two cases
T’/ T = 2/3 M g / (½ M g)
T’/ T = 4/3
T’= 4/3 T
The new tension is 4/3 = 1.33 of the previous tension the answer e
Answer:
acceleration= velocity ÷ time
Explanation:
the question is outrageous
Answer:
2,500 Joules (J) or Newton Meter (N M)
Explanation:
Work = Force x Distance
The force in this equation is 500 Newtons. The distance (displacement) is 5 meters. Plug it into the equation above.
Work = 5m x 500n
Work = 2,500 Joules or Newton-Meters.
Therefore 2,500 Joules or Newton Meters of work is done on an object.