The potential energy of the spring is 6.75 J
The elastic potential energy stored in the spring is given by the equation:

where;
k is the spring constant
x is the compression/stretching of the string
In this problem, we have the spring as follows:
k = 150 N/m is the spring constant
x = 0.3 m is the compression
Substituting in the equation, we get


Therefore. the elastic potential energy stored in the spring is 6.75J .
Learn more about potential energy here:
brainly.com/question/10770261
#SPJ4
It would be the first option.
Explanation-
The number of protons is equal to the atomic number the number of neutrons is the mass minus the atomic number.
Answer: 2.80 N/C
Explanation: In order to calculate the electric firld inside the solid cylinder
non conductor we have to use the Gaussian law,
∫E.ds=Q inside/ε0
E*2πrL=ρ Volume of the Gaussian surface/ε0
E*2πrL= a*r^2 π* r^2* L/ε0
E=a*r^3/(2*ε0)
E=6.2 * (0.002)^3/ (2*8.85*10^-12)= 2.80 N/C
Answer:
Mass of the aluminium chunk = 278.51 g
Explanation:
For an isolated system as given the energy lost and gains in the system will be zero therefore sum of all transfer of energy will be zero,as the temperature will also remain same
A specific heat formula is given as
Energy Change = Mass of liquid x Specific Heat Capacity x Change in temperature
Q = m×c×ΔT
Heat gain by aluminium + heat lost by copper = 0 (1)
For Aluminium:
Q = 
Q = m x 17.94 joule
For Copper:

Q= 4996.53 Joule
from eq 1
m x 17.94 = 4996.53

Mass of the aluminium chunk = 278.51 g
The term that describes the amount of energy transported past a given area of the medium per unit time would be "intensity." In addition, the formula for computing intensity would be:
Intensity = Energy / (Time * Area)
It can be implied that the wave would be more intense when its energy transfer rate gets increased and vibration amplitudes also increases.