Answer:
(b) the point charge is moved outside the sphere
Explanation:
Gauss' Law states that the electric flux of a closed surface is equal to the enclosed charge divided by permittivity of the medium.

According to this law, any charge outside the surface has no effect at all. Therefore (a) is not correct.
If the point charge is moved off the center, the points on the surface close to the charge will have higher flux and the points further away from the charge will have lesser flux. But as a result, the total flux will not change, because the enclosed charge is the same.
Therefore, (c) and (d) is not correct, because the enclosed charge is unchanged.
Mainly looking at scans ansd the levels of hormons and chemicals when we use or brain for example when we use the frontal lobe diffren thsades will appear. our stress levels as well. how we react to things problems situations or questions.
Answer:
a) v = 2,152 10⁸ m / s b) t = 2.71 10⁸ s or t = 85.93 year
Explanation:
a) In this special relativity exercise we have that time is measured in the same ship, so it is the proper time,
v = d / t
Let's reduce the distance to the SI system
d = 4.3 l and (9.46 1015 m / 1ly) = 40.678 10¹⁵ m
t = 5.0 y (365 day / 1 y) (24 h / 1 day) (3600s / 1h) = 1.89 10⁸ s
Let's calculate
v = 40.678 10¹⁵ / 1.89 10⁸
v = 2,152 10⁸ m / s
b) The time seen from the ground for which the ship moves is given by
t = t₀ / √ (1- (v/c)²)
Let's calculate
t = 1.89 10⁸ / √ (1 - (2.152 / 2.998)²)
t = 1.89 10⁸ / 0.6962
t = 2.71 10⁸ s
Let's reduce this time to years
t = 2.71 10⁸ s (1h / 3600s) (1day / 24h) (1 and / 365 d)
t = 85.93 year
I'm not entirely sure but I believe that it will hit the ground and bounce back up
Answer:
<u>A</u>
Explanation:
The heart cells must contract simultaneously to move blood.
This means that it needs to act fast and efficiently.
Therefore, the connections among heart cells are characterized by :
- having many branches
- having many communicating junctions
The correct option should be <u>A</u>