The distance between two consecutive nodes and the amplitude after 0.56s are m/2 and 1.75×10^(-4) m respectively.
<h3>What's the distance between consecutive nodes of the displacement of air molecules?</h3>
- Wavelength is the distance between two consecutive nodes or toughs or crests or anti-nodes.
- So, distance between consecutive nodes = wavelength = 2π÷k
= 2π/(4π÷m)
= m/2
<h3>What's the amplitude after 0.56s of the displacement of air molecules?</h3>
Displacement after 0.56 s = 0.008×cos(50π×0.56s)
=1.75×10^(-4) m
Thus, we can conclude that the distance between consecutive nodes and displacement after 0.56 s are m/2 and 1.75×10^(-4) m respectively.
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: The particle displacement y of air molecules due to a sound wave is given by y=0.008coswtsinkz where k=4π÷m and w=50π rads/s.
Calculate:
I) the distance between 2 consecutive nodes
ii) the amplitude after 0.565s
Learn more about the wavelength here:
brainly.com/question/10750459
#SPJ1
Answer:
c) 
Explanation:
Coulomb's law says that the force exerted between two charges is inversely proportional to the square of distance between them, and is given by the expression:

where k is a proportionality constant with the value 
In this case
, so we have:

Solving the equation for q, we have:



Replacing the given values:


Explanation:
The speed of sound wave only depends on the property of the medium like density and the bulk modulus of the medium particle. The speed of sound also depends on the temperature of the medium.
On comparing sound waves with different frequencies and wavelengths traveling through air, the speed of the wave doesn’t depend on the frequency or the wavelength. Hence, the correct option is (1).
Answer:
y <8 10⁻⁶ m
Explanation:
For this exercise, they indicate that we use the Raleigh criterion that establishes that two luminous objects are separated when the maximum diffraction of one of them coincides with the first minimum of the other.
Therefore the diffraction equation for slits with m = 1 remains
a sin θ = λ
in general these experiments occur for oblique angles so
sin θ = θ
θ = λ / a
in the case of circular openings we must use polar coordinates to solve the problem, the solution includes a numerical constant
θ = 1.22 λ / a
The angles in these measurements are taken in radians, therefore
θ = s / R
as the angle is small the arc approaches the distance s = y
y / R = 1.22 λ / s
y = 1.22 λ R / a
let's calculate
y = 1.22 500 10⁻⁹ 0.42 / 0.032
y = 8 10⁻⁶ m
with this separation the points are resolved according to the Raleigh criterion, so that it is not resolved (separated)
y <8 10⁻⁶ m
It is the last number minus 3